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ABSTRACT

Linear congruential random number generators (LCGs) are most widely
used for particle-transport Monte Carlo methods and most Monte Carlo
codes employ 47- or 48-bit LCGs. Recent progress of computers makes the
period of the generators shorter. Thus, we picked up possible candidates
of 63-bit LCGs and tested the LCGs including the current MCNP random
number generator. We performed the spectral test, Knuth’s standard tests
and Marsaglia’s DIEHARD tests for the MCNP generator, 63-bit LCGs ex-
tended from the MCNP generator and 63-bit LCGs proposed by L’Ecuyer.
We found that the MCNP generator fails some tests in the DIEHARD test
suite and the 63-bit LCGs extended from the MCNP RNG fail the spectral
test. On the other hand, L’Ecuyer’s 63-bit LCGs pass all the tests and their
multipliers are excellent. It is considered that they are the most promising
LCGs that can be easily upgraded from the current LCG.
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1 Introduction

It is needless to say that random number generators (RNGs) play a very
important role in Monte Carlo simulation. If the quality of a RNG used in the
simulation is poor, we cannot trust all results obtained from the simulation.
Thus, RNGs used in the simulation must have robust theoretical properties
and must be thoroughly verified with tests.

In general, random numbers generated on computers are called “pseudo”
random numbers and the sequence of the numbers has a period or cycle length
because the available bit length is limited. RNGs should have a period long
enough for the simulation. The period can be known theoretically and an
appropriate parameter set must be chosen to achieve the long period.

Another requirement for RNGs is that random numbers must be ran-
domly and uniformly distributed in a certain interval. This is often examined
by RNG tests with random numbers actually generated. There are a large
number of tests proposed for this purpose and some tests have been used
as de facto standard. RNGs used should pass some tests for verification of
randomness and uniformity.

Linear congruential generators (LCGs) are most frequently used in Monte
Carlo simulation. The LCG is one of the classical generators proposed by
Lehmer[1]. A lot of other generators have been proposed and some of them
have a longer period than the LCG. Nevertheless, most Monte Carlo codes
for particle transport have conventionally used them for a long time. It is
because LCGs have the following desirable properties;

1. The sequence is deterministic so that repeated calculations will produce
identical results.

2. They are very fast, involving only a small number of arithmetic oper-
ations.

3. Initialization is trivial, and the state information to specify the sequence
for a history is small (1 word).

4. A simple algorithm exists for skipping ahead to any given point in the
random sequence.

5. If 48 bits of precision are used in the LCG, the period is large (246 ∼
7.0 × 1013, or ∼ 1014) and serial correlation is entirely negligible.
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6. The algorithm is robust, that is, it cannot fail.

Most Monte Carlo codes use 47- or 48-bit LCGs that have the modulus
of 247 or 248 and the period of 245 or 246, respectively. The modulus is
usually restricted by integer precision of compilers and chosen as a nearly
maximum value of available integers for a long period. Such LCGs generate
a random number sequence of a period long enough for ordinary Monte Carlo
calculations. For example, the current version of MCNP (Version 4) uses a
48-bit LCG and 152917 random numbers are kept for each particle (stride).
Then the number of tracked particles from just a sequence is approximately
246/152917 = 4.6 × 108.

Recently it is, however, not unusual to perform a calculation for 108

histories or more as the computer speed increases rapidly. Even if all random
numbers in a sequence are exhausted, the calculation result would be still
reliable in most cases but it may cause unpredictable correlation. Therefore,
LCGs with a longer period have been recently required. Fortunately, recent
most compilers allow to use 64-bit integers and thus we can extend the period
easily.

A new RNG package upgraded for MCNP Version 5 (MCNP5) includes
not only the original MCNP 48-bit LCG but also several 63-bit LCGs. The
63-bit LCGs have the period of 261(= 2.3 × 1018) and 263(= 9.2 × 1018)
for multiplicative and mixed LCGs, respectively. Some 63-bit LCGs in the
package are recommended by L’Ecuyer[2] and the others are obtained by
slightly changing the parameters to determine LCGs. Therefore, they are
subject to the RNG tests.

In this work, all the proposed RNGs for MCNP5 are tested with the
standard test suite summarized by Knuth[3] and the DIEHARD test suite
proposed by Marsaglia[4].

2 Linear Congruential Generator

2.1 Review of principle and features

The basic recursive equation for the linear congruential generators (LCGs)
is given by

Sn+1 = (gSn + c) mod m, (1)

where Sn is the integer in the interval [0, m − 1], m the modulus (m > 0), g
the multiplier (0 ≤ a < m), c the increment (0 ≤ c < m). Then, the random
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number ξn between 0 and 1 is generated by the following equation;

ξn = Sn/m. (2)

We denote the above LCG as LCG(g, c, m). The LCGs are categorized into
2 types; multiplicative LCGs for c = 0 and mixed LCGs for c %= 0.

Apparently the integers generated by Eq. (1) lie between 0 and m − 1.
Thus the possible maximum period is m. In the case of multiplicative LCGs,
the integers lie between 1 and m− 1 because Si = 0 cannot be allowed. The
possible maximum period is m− 1.

The maximum period cannot be achieved for all the sets of (g, c, m, S0).
Our most concern is to find the sets that enable LCGs have the maximum
period. For this purpose, we use the following theorems for mixed and mul-
tiplicative LCGs, respectively.

Theorem A (See [3, p. 17]) The LCG(g, c, m) has the maximum period m
if and only if

1. c is relatively prime to m;

2. g − 1 is a multiple of p, for every prime p dividing m;

3. g − 1 is a multiple of 4, if m is a multiple of 4.

Theorem B (See [16, p. 592]) The LCG(g, 0, m) has the maximum period
m − 1 if and only if

1. m is a prime number;

2. g is a primitive root of m.

g is a primitive root of m (prime) if and only if

• gm−1 ≡ 0 (mod m);

• For all integers i < m− 1, the quantity (gi − 1)/m is not an integer.

Theorems A and B give us to choose the sets of the parameters but there
are still a huge number of choices that satisfy Theorem A. What we have to
consider first is often the choice of a modulus m. It is restricted by integer
precision available on a computing platform. Currently, a type declaration
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INTEGER(8) is available on most platforms and the modulus is often less
than or equal to 264 in this case.

There are two major choices for the modulus. One is a prime modulus.
In particular, a Mersenne prime that has the form of 2α − 1 is often used.
Such RNGs are often seen in scientific subroutine libraries. The other choice
is the modulus of the power of 2. This is also often used because of the com-
putational advantage. However RNGs with such moduli have the following
drawbacks;

• They does not have the maximum period m− 1 because they does not
satisfy Theorem B-1.

• The (r +1)-th most significant bit has period length at most 2−r times
that of the most significant bit [2].

In spite of these drawbacks, The RNGs with moduli of the power of 2
is traditionally used in Monte Carlo codes for particle transport. We also
investigate only those RNGs in this work. For the RNGs, Theorems A for
mixed RNGs can be rewritten as follows.

Theorem C (See [16, p. 601]) The LCG(g, c, 2β) has the maximum period
2β if and only if

1. g ≡ 1 (mod 4);

2. c is odd.

On the other hand, we use the following theorem for multiplicative LCGs
instead of Theorem B.

Theorem D (See [16, p. 598]) The LCG(g, 0, 2β) has the maximum period
2β−2 if and only if

1. g ≡ ±3 (mod 8);

2. S0 is an odd integer.

Furthermore, multipliers of the form A ≡ 5(mod 8) produce more uniformly
distributed random numbers than multipliers of the form A ≡ 3(mod 8) (See
[16, p. 600]). We may choose the of the form A ≡ 5(mod 8) though it is not
particularly serious for large β.

We have to find the sets of the parameters that satisfy Theorem C or D
at least.
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2.2 New MCNP RNGs

A new random number package for MCNP5 includes the following RNGs.

1. LCG(519, 0, 248) : current MCNP RNG

2. LCG(519, 0, 263) : multiplicative LCG

3. LCG(523, 0, 263) : multiplicative LCG

4. LCG(525, 0, 263) : multiplicative LCG

5. LCG(519, 1, 263) : mixed LCG

6. LCG(523, 1, 263) : mixed LCG

7. LCG(525, 1, 263) : mixed LCG

8. LCG(3512401965023503517, 0, 263) : L’Ecuyer’s table

9. LCG(2444805353187672469, 0, 263) : L’Ecuyer’s table

10. LCG(1987591058829310733, 0, 263) : L’Ecuyer’s table

11. LCG(9219741426499971445, 1, 263) : L’Ecuyer’s table, mixed LCG

12. LCG(2806196910506780709, 1, 263) : L’Ecuyer’s table, mixed LCG

13. LCG(3249286849523012805, 1, 263) : L’Ecuyer’s table, mixed LCG

The first RNG is a 48-bit LCG that has been used for MCNP. This LCG
is proposed by Beyer (See [12]) and its validity has been well established
through many production runs. The other RNGs that are newly implemented
for MCNP5 are 63-bit LCGs. Of course, 64-bit LCGs can be easily realized
on current 64-bit based platforms but there are still machine/compiler quirks
with a sign bit. Therefore, the 63-bit LCGs are chosen for portability.

LCGs 2 ∼ 4 are 63-bit multiplicative LCGs. LCG 2 has the same multi-
plier as the original MCNP RNG and is a very good candidate for a 63-bit
LCG. However, the multiplier may be slightly small for a modulus 263. The
most significant bit of 519 is 45 since

519 = 1000101011000111001000110000010010001001111012

= 244 + 240 + 238 + 236 + 235 + 231 + 230 + 229 + 226 + 222 + 221

+215 + 212 + 28 + 25 + 24 + 23 + 22 + 20.

6



Thus the first 19 bits are 0’s in the 64-bit representation. It does not always
lead to the non-randomness of a sequence but it is desirable that each of 64
bits should be randomly arranged with 0 and 1.

The multipliers 523, 525 and 527 are possible candidates. One reason is
that multipliers of odd powers of 5 always 5 modulo 8. Since

52i−1 = 5 × (3 × 8 + 1)i−1 ≡ 5 (mod 8)

for i > 1, the multipliers of 52i−1 satisfy Theorem D-1. The other reason
is that the multipliers can be expressed in the precision of a FORTRAN
type declaration INTEGER(8) whose range is [−263, 263 − 1]. However, 527

is rejected from the candidates because of its bit pattern. The following is
the bit patterns for 523, 525 and 527;

523 = 1010100101101000000101100011111100001010010101111011012

525 = 100001000101100101010001011000010100000000010100100001

001012

527 = 110011101100101110001111001001111111010000100000000011

1100111012 .

One can see a regular bit pattern in the underlined part.
LCGs 5 ∼ 7 are 63-bit mixed LCGs. The multipliers are the same as

those of the multiplicative LCGs. They also satisfy Theorem C-1 since

52i−1 = (4 + 1)2i−1 ≡ 1 (mod 4).

The period of the mixed LCGs is 263 and is slightly longer than that of the
multiplicative LCGs.

LCGs 8 ∼ 13 are 63-bit LCGs proposed by L’Ecuyer [2]. They have a
good lattice structure and are recommended to use as RNGs for computer
simulation.

3 Tests for RNGs

There are a lot of tests to assess the RNGs. Here, we summarize the tests
focusing on those we have used in this work.

The tests are classified into following two categories.
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• Theoretical tests: Analyzing the algorithm of RNGs based on the num-
ber theory and the theory of statistics.

• Empirical tests: Analyzing the uniformity, patterns and so on of RNs
generated by RNGs.

The theoretical tests provide us a clue for a good choice of the RNG param-
eters such as multiplier, increment, modulus etc. On the other hand, the
empirical tests uses output RNs that are used actually, and thus they are
useful to verify the algorithm implemented in the program.

The empirical tests can be further classified into some categories.

• Standard tests

• Bit level tests

• Physical tests

In this work, we have performed the standard and Bit level tests with the
SPRNG[17] and DIEHARD[4] test routines. The tests used in this work are
briefly described in the following sections.

Some of these tests are applied directly to a real-valued sequence of RNs

ξ0, ξ1, ξ2, · · · . (3)

However, other tests must be applied to a sequence of random integers. In
this case, the sequence of random integers

I0, I1, I2, · · · (4)

is obtained from the following rule;

In = 'dξn(, (5)

where d is an arbitrary integer and 'x( is the floor of x, that is, the greatest
integer such that maxk≤x k. d is sometimes chosen as a power of 2;

d = 2m, (6)

where m is an integer. For 0 ≤ ξn < 1, ξn can be expressed as the following
form;

ξn = b1 ∗ 2−1 + b2 ∗ 2−2 + · · · + bm−1 ∗ 2−m+1 + bm ∗ 2−m + · · · . (7)
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Then In turns out to be

In = b1 ∗ 2m−1 + b2 ∗ 2m−2 + · · · + bm−1 ∗ 21 + bm ∗ 20. (8)

Therefore, In represents the m most significant bits of the binary represen-
tation of ξn.

3.1 Theoretical Test

One of the most useful theoretical tests for LCGs is the spectral test. This
test inspects the property of the full period of a RNG. All RNGs currently
known to be bad fail the test [3, p. 93].

This test was originally introduced by Coveyou and MacPherson [5] and
improved by Dieter [6] and Knuth [7]. Hopkins proposed a revised algorithm
with a source program to perform the spectral test [8].

3.1.1 Spectral Test

It is well known that LCGs have regular patterns (lattice structures) when
overlapping t-tuples of a random number sequence are plotted in a hypercube
[9]. In other words, all the t-tuples are covered with families of parallel (t−1)-
dimensional hyperplanes. The spectral test determines the maximal distance
between adjacent parallel hyperplanes. As one can easily find, the smaller
the distance is, the better the RNG is.

Now we define the i-th overlapping t-tuples;

(ξi, ξi+1, · · · , ξi+t−1) for t ≥ 1,

where ξi is the i-th random number of a sequence. We regard the t-tuples
as a point in the t-dimensional unit hypercube [0, 1)t If the period of the
sequence is M , we can plot M points in the hypercube. Then, there exist
multiple families of of parallel (t − 1)-dimensional hyperplanes that covers
all the points. Let dt(m, g) be the maximal distance between the adjacent
parallel hyperplanes. (Recall that m is the modulus and g the multiplier.)
The distance is also rewritten as follows [3, p. 94];

dt(m, g) =
1

νt(m, g)
, (9)
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where νt(m, g) is called the t-dimensional accuracy of the RNG and defined
as follows [3, p. 101];

νt(m, g) = min
i






√√√√
t∑

k=1

Si+k−1

∣∣∣∣∣∣

t∑

k=1

gi−1Si+k−1 ≡ 0 mod m




 (10)

for 2 ≤ t ≤ T , given T. The spectral test calculates νt(m, g) and an algorithm
is described in Reference [3, p. 101].

There is a theoretical upper bound on νt(m, g) given by

νt(m, g) ≤ γ1/2
t τ 1/t def

= ν∗
t (m), (11)

where τ is the number of points per unit volume and γt is Hermite’s constant.
The constant is known for t ≤ 8 (See [10, p. 332]):

γ1 = 1, γ2 =
(

4

3

)1/2

, γ3 = 21/3, γ4 = 21/2,

γ5 = 23/5, γ6 =
(

64

3

)1/6

, γ7 = 43/7, γ8 = 2. (12)

Since we consider multiplicative LCGs with modulus 2β and mixed LCGs
with a full period, τ is equivalent to M (τ = M):

M =

{
m
4 for multiplicative LCGs (modulus 2β)
m for mixed LCGs.

(13)

Then the inequality (11) can be rewritten as

νt(m, g) ≤ γ1/2
t M1/t def

= ν∗
t (m). (14)

Identically, there is a lower bound on dt(m, g):

dt(m, g) ≥ γ−1/2
t τ−1/t def= d∗

t (m). (15)

In our case, the above inequality can be rewritten as

dt(m, g) ≥ γ−1/2
t M−1/t def

= d∗
t (m). (16)

The normalized maximal distance is often used as a measure and is defined
as

St(m, g) =
d∗

t (m)

dt(m, g)
. (17)
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St(m, g) lies between 0 and 1.
Note that the increment c does not appear in the above discussion. In

theory, c does not affect the spectral test [3, p. 97], for c %= 0. However,
c affects the results of the spectral test implicitly in our work because we
consider the LCGs with modulus 2β and the existence of c increases the
period of them.

There are some criteria to rank LCGs. Knuth proposed a measure mut(m, g)
that indicates the effectiveness of the multiplier g [3, p. 105]:

µt(m, g) =
πt/2νt

t(m, g)

(t/2)!M
, (18)

where (
t

2

)
=

(
t

2

) (
t

2
− 1

)
· · ·

(
1

2

)√
π for t odd. (19)

Knuth also introduced a criterion with µt(m, g) as summarized in Table 1.

Table 1: Knuth’s criterion for the spectral test

µt(m, g) for 2 ≤ t ≤ 6 Result
µt(m, g) ≥ 1 Pass and the multiplier is excellent.
1 ≥ µt(m, g) ≥ 0.1 Pass.
0.1 > µt(m, g) Fail.

Fishman employed St(m, g) to screen multipliers in his papers [11], [12].
He proposed the following criterion;

MT (m, g) def= min
2≤t≤T

St(m, g) ≥ S, (20)

where S is between 0 and 1 and he chose S = 0.8. According to his study
[12], any multiplier that satisfies the above condition does not exceed d∗

t (m)
by more than 25%.

L’Ecuyer also employed same criterion as above to obtain the best multi-
pliers for 31-bit and 15-bit LCGs [13]. Recently, he performed an extensive
study to find LCGs of different sizes with good lattice structures and investi-
gated dt(m, g) for higher dimensions [2]. In the paper, he employed extended
criteria M8(m, g), M16(m, g) and M32(m,g) and proposed the best multiplier
for each criterion.
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3.2 Standard Tests

The standard tests have been used widely to check the quality of RNGs and
were well reviewed by Knuth[3].

3.2.1 Equidistribution test (Frequency test)

The equidistribution test is a very fundamental test for Monte Carlo calcula-
tions. This test check whether RNs are generated uniformly between 0 and 1.
In this test, the RNs can be submitted directly to the Kolmogorov-Smirnov
(K-S) test[3] but the chi-square (χ2) test can be also applied for the random
integers. In the latter case, RNs in the interval [0, 1) are multiplied by d
and truncated to integers in the interval [0, d). If the RNs are uniformly
generated, each integer must have the equal probability 1/d.

The equidistribution test in the SPRNG routines uses the latter scheme.
In addition, the chi-square test is repeated the specified times (NTESTS)
and the K-S test is applied for the obtained chi-square statistics.

3.2.2 Serial test

This test checks serial correlation of a RN stream. Generally, n groups of
k-tuples are comprised of k ∗ n random integers in [0, d − 1], and then it is
checked whether the k-tuples are uniformly distributed in the k-dimensional
hypercube. Each k-tuple must occur with the probability 1/dk unless the
serial correlation exists.

The serial test in the SPRNG routines can be used only for pairs of RNs,
that is, k = 2. We generate n pairs of integers such as (I1, I2), (I3, I4), · · ·,
(I2n, I2n+1) and count the number of times that each pair occurs. Each of the
d2 pairs should be equally likely to occur. Thus we apply the chi-square test
to these d2 bins with probability 1/d2 in each bin. In addition, the chi-square
test is repeated the specified times (NTESTS) and the K-S test is applied
for the obtained chi-square statistics.

3.2.3 Gap test

In this test, the lengths of “gaps” between random numbers in a certain
range are counted. The range is defined with 2 real numbers a, b such that
0 ≤ a < b ≤ 1. Suppose that random numbers ξj and ξr lie between a and b
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and others ξj+1, · · · , ξr−1 do not; ξj , ξj+1, · · · , ξr−1, ξr. Then the gap length is
r.

As an example, suppose that we get the following RN sequence and set
(a, b) = (0.4, 0.6);

0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361, 0.25714, 0.45412,
0.13971, 0.59733, 0.26273, 0.09937, 0.94662, 0.14760, 0.34662, 0.93293,
0.08641, 0.02030, 0.45855, 0.82829, 0.20008, 0.32121, 0.72824, 0.45938,

· · ·,

then we obtain the gap lengths 5, 2, 10, 5, · · ·, in turn.
In SPRNG, n gap lengths are counted and gap lengths greater than t is

lumped together in a category. The chi-square test is applied to the t + 1
categories. In addition, the chi-square test is repeated the specified times
(NTESTS) and the K-S test is applied for the obtained chi-square statistics.

3.2.4 Poker test (Partition test)

We generate n groups of k successive random integers (k-tuples) in [0, d− 1]
and count the number of distinct integers in each k-tuple. A chi-square test
is then applied to the k categories.

Suppose that we consider the following random integer sequence for d = 5,

0, 3, 2, 4, 1, 0, 1, 2, 0, 2, 1, 0, 4, 1, 1, 4, 0, 0, 2, 4, · · ·

and make 5-tuples (k = 5). Then, we obtain the following result.

5-tuple distinct integers hand
(0, 3, 2, 4, 1) 5 all different
(0, 1, 2, 0, 2) 3 two pair
(1, 0, 4, 1, 1) 3 three of a kind
(4, 0, 0, 2, 4) 3 two pair

· · ·

The above example shows the simple case of the classical poker test.
In this example, “two pair” and “three of a kind” are treated as the same
category but not in the classical test. Likewise, “full house” and “four of a
kind” are treated as the different category in the classical test.

In SPRNG, the chi-square test is repeated the specified times (NTESTS)
and the K-S test is applied for the obtained chi-square statistics.
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3.2.5 Coupon collector’s test

We generate random integers in [0, d − 1] and observe the length of the
segment that includes a complete set of integers from 0 to d−1. For example,
if we get the following random integer sequence for d = 3,

0, 1, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 2, 0, 0, 1, 2, · · · ,

then we obtain the following result.

segment length of segment
(0, 1, 1, 2) 4
(0, 0, 0, 1, 0, 1, 0, 0, 2) 9
(0, 1, 2) 3
(0, 0, 1, 2) 4
· · ·

Usually, we lump segments of length larger than t and have t − d + 1
categories. A chi-square test is then applied to these categories.

In SPRNG, the chi-square test is repeated the specified times (NTESTS)
and the K-S test is applied for the obtained chi-square statistics.

3.2.6 Permutation test

We generate n sets of m successive RNs (m-tuples) in [0, 1). The RNs in
each set have m! possible orders and the number of times each order appears
is scored. All the orders must occur with equal probability if the RNs are
properly generated. A chi-square test is thus applied to m! categories with
probability 1/m!.

As an example, suppose that we get the following RN sequence,

0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361,
0.25714, 0.45412, 0.13971, 0.59733, 0.26273, 0.09938,

· · ·,

and consider the sets of triples (m = 3). When we rank the triples in each set
according to their magnitude, we have 6 categories; (1,2,3), (1,3,2), (2,1,3),
(2,3,1), (3,1,2), (3,2,1), where 1 and 3 mean the smallest and largest RNs
in each set, respectively. Then we can obtain the following result from the
above sequence.
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triples category
(0.10574, 0.66509, 0.46622) (1,3,2)
(0.93925, 0.26551, 0.11361) (3,2,1)
(0.25714, 0.45412, 0.13971) (2,3,1)
(0.59733, 0.26273, 0.09938) (3,2,1)
· · ·

In SPRNG, the chi-square test is repeated the specified times (NTESTS)
and the K-S test is applied for the obtained chi-square statistics.

3.2.7 Runs-up test

In the runs-up test, RNs are generated in [0, 1) and the length of runs-up in
which the successive RNs are increasing. For example, if we get the same RN
sequence as in the permutation test and put a vertical line at the breakpoint,

0.10574, 0.66509 | 0.46622, 0.93925 | 0.26551 | 0.11361,
0.25714, 0.45412 | 0.13971, 0.59733 | 0.26273 | 0.09938,

· · ·,

then the length of the first run is 2, the length of the second run is 2, the
length of the third and fourth runs is 1, etc. The runs up of the length greater
than t are lumped together.

We cannot simply apply a chi-square test to the counts of the length
because the adjacent runs are not independent. Instead we apply the chi-
square test to a test statistic in the covariance matrix form.

In SPRNG, a slightly modified version of the test is implemented. The
RN that follows a previous run is discarded. In the above example, 0.46622,
0.26551, 0.13971 and 0.26273 are discarded;

0.10574, 0.66509 | (0.46622) 0.93925 | (0.26551) | 0.11361,
0.25714, 0.45412 | (0.13971) 0.59733 | (0.26273) | 0.09938,

· · ·.

Then the lengths of runs-up are, in turn, 2, 1, 3, 1, 1 · · ·. The chi-square
test is applied to the counts of the lengths and repeated the specified times
(NTESTS) and the K-S test is applied for the obtained chi-square statistics.
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3.2.8 Maximum-of-t test

We generate n sets of t successive RNs (t-tuples) in [0, 1) and observe a
maximum RN in each set. For example, suppose that we get the following
RN sequence,

0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361,
0.25714, 0.45412, 0.13971, 0.59733, 0.26273, 0.09938,

· · ·.
If t = 3, we obtain the following result.

triples maximum RN
(0.10574, 0.66509, 0.46622) 0.66509
(0.93925, 0.26551, 0.11361) 0.93925
(0.25714, 0.45412, 0.13971) 0.45412
(0.59733, 0.26273, 0.09938) 0.59733
· · ·

The distribution of the maximum RNs should be xt and the K-S test is
applied to them.

In SPRNG, the K-S test is repeated the specified times (NTESTS) and
another K-S test is applied for the obtained K-S statistics.

3.2.9 Collision test

Suppose that we have m urns and throw n balls into the urns at random.
If m >> n, then most of the balls fall into empty urns. However, some
balls may fall into an run that is occupied by other balls. In this case, it is
said that a “collision” has occurred. The collision test counts the number of
collisions and a RNG passes this test if there are not too many or too few
collisions.

In order to realize the above idea, we generate n sets of log md successive
random integers in [0, 2logd − 1]. Then we form n new log m bit random
integers with the log d most significant bits from log md random integers,
where log m = log md × log d. For example, if log d = 1 and we get the
following random integer sequence,

0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0,
1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,

· · ·,
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then we obtain the following result for log md = 20.

010100000100100100012 = 328849
001010101111011000102 = 175970
111000010101000101102 = 922902

· · ·.

All possible values of the new random integers and each new random
integer correspond to urns and a ball, respectively. When the same random
integer appears in n sets, a collision occurs. The number of collisions is
counted and a chi-square test is applied to it.

In SPRNG, log m = log md × log d must be less than 32 and n must be
less than the number of possible new random integers 2log md×log d.

3.3 DIEHARD Tests

3.3.1 Birthday spacings test

In this test, we choose m birthdays in a year of n days. This is simulated
by generating m random integers in [1, n]. Suppose we get random integers
I1, I2, · · · , Im, we sort them into non-decreasing order; I(1) ≤ I(2) ≤ · · · ≤
I(m). Then we obtain a list of m birthday spacings;

I(1), I(2) − I(1), I(3) − I(2), · · · , I(m) − I(m−1) = Y1, Y2, Y3, · · · , Ym.

We sort the spacings into non-decreasing order; Y(1) ≤ Y(2) ≤ · · · ≤ Y(m).
Then we counts the number of indices j such that 1 < j ≤ n and Y(j) = Y(j−1).
If j is the number of values that occur more than once in that list, then j is
asymptotically Poisson distributed with mean m3/(4n).

Experience shows n must be quite large, say n ≥ 218, for comparing the
results to the Poisson distribution with that mean. This test in DIEHARD
uses n = 224 and m = 29, so that the underlying distribution for j is taken
to be Poisson with mean λ = (29)3/(22 × 224) = 2. The process to obtain j
is repeated 500 times and a chi-square test is applied to 500 j’s. As a result,
the chi-square test provides a p-value.

This test in DIEHARD uses several parts of bits of given 32-bit random
integers. The first test uses bits 1-24 (counting from the left) from integers.
In the second test, bits 2-25 are used to provide birthdays, then 3-26 and so
on to bits 9-32. Each set of bits provides a p-value, and the nine p-values
provide a sample for a K-S test.
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3.3.2 Overlapping 5-permutation test

This test is a kind of overlapping m-tuple tests. The tests use sets of over-
lapped successive random integers. For example, we consider the following
sequence of random integers obtained for d = 8 in Eq. (5);

0, 5, 3, 7, 2, 0, 2, 3, 1, 4, 2, 0, 7, 1, 2, 7, · · ·, 4, 5, 3, 1, 5, 2

In the case of m = 5, we add the first 4 integers to the end of the sequence
and we group n sets of overlapping 5-tuples;

(0, 5, 3, 7, 2), (5, 3, 7, 2, 0), (3, 7, 2, 0, 2), · · · (5, 2, 0, 5, 3), (2, 0, 5, 3, 7)

According to Marsaglia[24], the circulation has an asymptotically negligible
effect but makes deriving a covariance matrix for a test statistic much simpler.
Obviously, the sets are not independent of each other and thus a test statistic
of the quadratic form with a covariance matrix is used. The statistic has
asymptotically a chi-square distribution.

The basic idea of the overlapping 5-permutation test is the same as the
permutation test described in Section 3.2.6. The difference is whether the
sets of 5-tuple is overlapped or not. Each set of five successive integers can
be in one of 120 states (5! possible orderings of five integers). The number
of occurrences of each state is counted for the test statistic.

This test in DIEHARD uses random integer sequences of length 1000 and
forms 1000 sets of overlapping 5-tuples. This process is repeated 1000 times
and the cumulative counts are made for a million 32-bit random integers. The
counts are used to yield the test statistic with the quadratic form in the weak
inverse of the 120×120 covariance matrix. (If CC−C = C , then C− is a weak
inverse of C .) Finally a p-value is obtained from a chi-square distribution
with 99 degrees of freedom (the asymptotic rank of the covariance matrix).
This version of overlapping 5-permutation test uses a million integers, twice.

3.3.3 Binary rank test

We form a binary matrix from a sequence of random integers. Each column
of the matrix consists of the binary representation of a random integer. In
general, m n-bit random integers forms a m × n binary matrix. The i-th
n-bit random integer can be expressed as follows;

Ii = fi,1 ∗ 2n−1 + fi,2 ∗ 2n−1 + · · · + fi,n−1 ∗ 21 + fi,n ∗ 20

= (fi,1fi,2 · · · fi,n−1fi,n),
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where fi,j is 0 or 1. Then using m integers, we obtain a binary matrix A;

A =





f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n
...

...
...

...
fm,1 fm,2 · · · fm,n




.

A lot of matrices are usually generated from a sequence of random integers
and the ranks of the matrices are calculated. A chi-square test is applied to
the ranks to obtain a p-value.

It is not alway necessary to use a full matrix for this test and we can use
a partial matrix. The binary rank test in DIEHARD is performed for three
forms of matrices; 31 × 31, 32 × 32(full) and 6 × 8 matrices. For 31 × 31
matrices, the leftmost 31 bits of 31 random integers are used to form each
matrix. The ranks can be from 0 to 31, but ranks less than 28 are rare. Thus
the counts for rank less than 28 are lumped together. Ranks are found for
40,000 matrices and a chi-square test is applied to counts for ranks 31,30,29
and equal to or less than 28.

For 32× 32 matrices, all bits of 32 random integers are used to form each
matrix. The ranks can be from 0 to 32. Since ranks less than 29 are rare,
the counts for rank less than 29 are lumped together. Ranks are found for
40,000 matrices and a chi-square test is applied to counts for ranks 32, 31,
30 and equal to or less than 29.

For 6 × 8 matrices, 6 bits of 8 random integers are used to form each
matrix. The ranks can be from 0 to 6. However, ranks 0,1,2,3 are rare and
thus their counts are lumped together as rank 4. Ranks are found for 100,000
matrices and a chi-square test is applied to the counts for ranks 6,5 and equal
to or less than 4.

3.3.4 Bitstream test

In this test, a sequence of random integers is taken to be a stream of sequential
bits. Since the i-th 32-bit random integer is expressed as (bi,1bi,2 · · · bi,32)
where bi,j = 0 or 1, the stream becomes

b1,1, b1,2, · · · , b1,32, b2,1, b2,2, · · · , b2,32, · · · , bi,1, bi,2, · · · , bi,32, · · · .

We treat bi,j’s as a letter 0 or 1 and think of the stream of bits as a succession
of overlapping 20-letter “words”. The first word is b1,13b1,14 · · · b1,31b1,32 and
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the second word is b1,14b1,15 · · · b1,32b2,1, and so on. The bitstream test counts
the number of missing 20-letter (20-bit) words in a string of 221 overlapping
20-letter words. There are 220 possible 20 letter words. For a truly random
string of 221 + 19 bits, the number of missing words j should be (very close
to) normally distributed with mean 141,909 and standard deviation σ = 428.
Thus (j − 141909)/428 should be a standard normal variate (z = (x− µ)/σ)
that leads to a uniform [0, 1) p-value. The test in DIEHARD is repeated
twenty times.

3.3.5 Overlapping-pairs-sparse-occupancy test (OPSO test)

In this test, 2-letter words are formed from an alphabet of 1024 letters. Each
letter is determined by a designated string of consecutive 10 bits from a 32-
bit random integer in the sequence to be tested. When we express the i-th
32-bit random integer as (bi,1bi,2 · · · bi,32) in the binary form, we can form
2-letter words with 2 last 10 bits;

b1,1b1,2 · · · b1,32︸ ︷︷ ︸
32-bit integer

, b2,1b2,2 · · · b2,32︸ ︷︷ ︸
32-bit integer

, · · ·

=⇒
1 word︷ ︸︸ ︷

b1,13b1,14 · · · b1,32︸ ︷︷ ︸
1 letter

b2,13b2,14 · · · b2,32︸ ︷︷ ︸
1 letter

,

1 word︷ ︸︸ ︷
b2,13b2,14 · · · b2,32︸ ︷︷ ︸

1 letter

b3,13b3,14 · · · b3,32︸ ︷︷ ︸
1 letter

, · · ·

The test generates 221 overlapping 2-letter words (from 221 +1 ”keystrokes”)
and counts the number of missing words, that is, 2-letter words which do
not appear in the entire sequence. The number of missing words j should
be very close to normally distributed with mean 141,909, standard deviation
σ = 290. Thus (j − 141909)/290 should be a standard normal variate that
provide a p-value.

The above process is repeated for the next designated 10 bits of 32-bit
random integers of the same sequence. In the next process, the following
2-letter words are used;

1 word︷ ︸︸ ︷
b1,12b1,13 · · · b1,31︸ ︷︷ ︸

1 letter

b2,12b2,13 · · · b2,31︸ ︷︷ ︸
1 letter

,

1 word︷ ︸︸ ︷
b2,12b2,13 · · · b2,31︸ ︷︷ ︸

1 letter

b3,12b3,13 · · · b3,31︸ ︷︷ ︸
1 letter

, · · ·

The OPSO test in DIEHARD repeats the process 22 times with the desig-
nated 10 bits shifted left.
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3.3.6 Overlapping-quadruples-sparse-occupancy test (OQSO test)

The OQSO test is similar to the OPSO test above. In this test, 4-letter words
are formed from an alphabet of 32 letters. Each letter is determined by a
designated string of 5 consecutive bits from a 32-bit random integer in the
sequence to be tested. Using the same expression for the i-th 32-bit random
integer as in the OPSO test, we can form 4-letter words with 2 last 5 bits;

1 word︷ ︸︸ ︷
b1,28b1,29 · · · b1,32︸ ︷︷ ︸

1 letter

b2,28b2,29 · · · b2,32︸ ︷︷ ︸
1 letter

b3,28b3,29 · · · b3,32︸ ︷︷ ︸
1 letter

b4,28b4,29 · · · b4,32︸ ︷︷ ︸
1 letter

,

1 word︷ ︸︸ ︷
b2,28b2,29 · · · b2,32︸ ︷︷ ︸

1 letter

b3,28b3,29 · · · b3,32︸ ︷︷ ︸
1 letter

b4,28b4,29 · · · b4,32︸ ︷︷ ︸
1 letter

b5,28b5,29 · · · b5,32︸ ︷︷ ︸
1 letter

,

...

The test generates 221 overlapping 4-letter words (from 221 +3 ”keystrokes”)
and counts the number of missing words, that is, 4-letter words which do
not appear in the entire sequence. The number of missing words j should
be very close to normally distributed with mean 141909, standard deviation
σ = 295. Thus (j − 141909)/295 should be a standard normal variate that
provide a p-value.

The above process is repeated for the next designated 5 bits of 32-bit
random integers of the same sequence. The OPSO test in DIEHARD repeats
the process 28 times with the designated 10 bits shifted left.

3.3.7 DNA test

The DNA test is similar to the OPSO and OQSO tests above. In this test,
10-letter words are formed from an alphabet of 4 letters. Each letter is
determined by a designated string of 2 consecutive bits from a 32-bit random
integer in the sequence to be tested. Using the same expression for the i-th
32-bit random integer as in the OPSO test, we can form 10-letter words with
2 last 2 bits;

1 word︷ ︸︸ ︷
b1,31b1,32︸ ︷︷ ︸
1 letter

b2,31b2,32︸ ︷︷ ︸
1 letter

· · · b10,31b10,32︸ ︷︷ ︸
1 letter

,

1 word︷ ︸︸ ︷
b2,31b2,32︸ ︷︷ ︸
1 letter

b3,31b3,32︸ ︷︷ ︸
1 letter

· · · b11,31b11,32︸ ︷︷ ︸
1 letter

, · · ·
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The test generates 221 overlapping 10-letter words (from 221+9 ”keystrokes”)
and counts the number of missing words, that is, 10-letter words which do
not appear in the entire sequence. The number of missing words j should
be very close to normally distributed with mean 141909, standard deviation
σ = 399. Thus (j − 141909)/295 should be a standard normal variate that
provide a p-value.

The above process is repeated for the next designated 2 bits of 32-bit
random integers of the same sequence. The OPSO test in DIEHARD repeats
the process 31 times with the designated 2 bits shifted left.

3.3.8 Count-the-1’s test on a stream of bytes

This test is a kind of overlapping m-tuple tests. We consider a sequence of
32-bit random integers as a stream of bytes (4 bytes per 32 bit integer).

32-bit integer
︷ ︸︸ ︷
b1,1 · · · b1,8︸ ︷︷ ︸

1 byte

, b1,9 · · · b1,16︸ ︷︷ ︸
1 byte

, b1,17 · · · b1,24︸ ︷︷ ︸
1 byte

, b1,25 · · · b1,32︸ ︷︷ ︸
1 byte

, b2,1 · · · b2,8︸ ︷︷ ︸
1 byte

, · · ·

Each byte can contain from 0 to 8 1’s, with probabilities 1,8,28,56,70,56,28,8,1
over 256. Now let the stream of bytes provide a string of overlapping 5-letter
words, each ”letter” taking values A,B,C,D,E. The letters are determined by
the number of 1’s in a byte;

Number of 1’s Letter Probability
0,1,2 A 37

3 B 56
4 C 70
5 D 56

6,7,8 E 37

There are 55 possible 5-letter words and the frequencies for each word are
counted for a string of 2560000 overlapping 5-letter words.

The quadratic form in the weak inverse of the covariance matrix of the cell
counts has asymptotically a chi-square distribution. Instead, an alternative
statistic Q5 − Q4 is used to provide a p-value. Q5 and Q4 are the native
Pearson’s sums for the counts of 5- and 4- letter words, respectively, and
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defined as follows;

Q5 =
∑

i,j,k,#,m

(wi,j,k,#,m − µi,j,k,#,m)2

µi,j,k,#,m

Q4 =
∑

i,j,k,#

(wi,j,k,# − µi,j,k,#)2

µi,j,k,#
,

where w and µ are the observed and expected counts, respectively, and
(i, j, k, *, m) denotes a possible state (word). Then the statistic has asymp-
totically a chi-square distribution with 55 − 54 degrees of freedom.

In DIEHARD, the above process is repeated twice and 2 p-values are
obtained.

3.3.9 Count-the-1’s test for specific bytes

This test is similar to the count-the-1’s test on a stream of bytes. Again, we
consider a sequence of 32-bit random integers as a stream of bytes. In this
test, a specific byte in each integer is chosen to form a letter. For example,
suppose the leftmost 8 bits in each integer are chosen, the following byte
stream is obtained;

b1,1 · · · b1,8︸ ︷︷ ︸
1 byte

, b2,1 · · · b2,8︸ ︷︷ ︸
1 byte

, b3,1 · · · b3,8︸ ︷︷ ︸
1 byte

, b4,1 · · · b4,8︸ ︷︷ ︸
1 byte

, b5,1 · · · b5,8︸ ︷︷ ︸
1 byte

, · · · .

¿From the stream, 256000 overlapping 5-letter words are formed and a test
statistic to provide a p-value is calculated in the same way as the count-the-
1’s test on a stream of bytes.

Next, the process is performed for another byte stream comprised of a
next specific byte in each integer,

b1,2 · · · b1,9︸ ︷︷ ︸
1 byte

, b2,2 · · · b2,9︸ ︷︷ ︸
1 byte

, b3,2 · · · b3,9︸ ︷︷ ︸
1 byte

, b4,2 · · · b4,9︸ ︷︷ ︸
1 byte

, b5,2 · · · b5,9︸ ︷︷ ︸
1 byte

, · · · .

The process is repeated 25 times and thus all possible successive bytes in
each integer are considered.

3.3.10 Parking lot test

We consider parking cars randomly in a square of side 100. Each car occupies
space of a circle of radius 1 there1. When cars are parked repeatedly, an

1It seems that a car occupies a square of side 1 in the DIEHARD program.
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attempt to park a car may cause a crash with one already parked. Then
the attempt is tried again at a new random location. Each attempt leads
to either a crash or a success. If a car is successfully parked, the position
of the car is added to the list of cars already parked. The number of cars
successfully parked k is counted for a large number of attempts and a p-value
is provided from the distribution determined by simulation.

This test in DIEHARD is performed for 12000 attempts. Simulation
shows that k should have a very close normal distribution with mean 3523 and
standard deviation 21.9 for those attempts. Thus (k − 3523)/21.9 should be
a standard normal variable that provides a p-value. This process is repeated
10 times and a K-S test is applied to a sample of 10 p-values.

3.3.11 Minimum distance test

In this test, n = 8000 random points in a square of side 10000 are chosen and
the minimum distance d between the (n2 −n)/2 pairs of the points is scored.
If the points are truly independent and uniform, the square of the minimum
distance d2 should be (very close to) exponentially distributed with mean
0.995. Thus 1 − exp(−d2/0.995) should be uniform on [0,1). This process is
repeated 100 times. A K-S test on the resulting 100 values serves as a test
of uniformity for random points in the square and yields a p-value.

3.3.12 3-D spheres test

In this test, 4000 random points are chosen in a cube of edge 1000. At
each point, a sphere is centered large enough to reach the next closest point.
Then the volume of the smallest such sphere is (very close to) exponentially
distributed with mean 120π/3. Thus the radius cubed r3 is exponential with
mean 30.0 (The mean is obtained by extensive simulation). The 3D spheres
test in DIEHARD generates 4000 such spheres 20 times. Each minimum
radius cubed leads to a uniform variable by means of 1 − exp(−r3/30.0),
then a K-S test is performed on the 20 p-values.

3.3.13 Squeeze test

This test uses real-valued random numbers uniformly distributed on [0, 1).
The random numbers are generated from a sequence of 32-bit random integers
as follows;

Ui = Ii/2
32.
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An initial number k0 = 231 = 2147483647 is multiplied by a random number
and then the next number k1 is obtained with the following equation;

ki = -ki−1U.,

where -x. is the ceiling of x, that is, the least integer such that mink≥x k. The
reduction is repeated until kj is 1 and j is the number of iterations necessary
to reduce k to 1. In DIEHARD, 100000 j’s are found and then the number
of times that j is ≤ 6, 7, · · · , 47,≥ 48 is counted. A chi-square test is applied
to the counts to provide a p-value.

3.3.14 Overlapping sums test

This test also uses real-valued random numbers uniformly distributed on
[0, 1) and the numbers are obtained in the same way as the squeeze test.
Suppose we get a sequence of the random numbers,

U1, U2, · · · ,

then we can form overlapping sums of 100 random numbers;

S1 = U1 + · · · + U100, S2 = U2 + · · · + U101, · · · .

The S’s are virtually normal with a certain covariance matrix. A linear
transformation of the S’s yields a sequence of independent standard nor-
mals, which are converted to uniform variables for a K-S test. This process
is repeated 100 times and 100 p-values are obtained. Another K-S test is
performed on the 100 p-values to provide a final p-value. Furthermore, the
above process is repeated 10 times in DIEHARD.

3.3.15 Runs test

This is basically the same as the runs-up test in the standard test suite but
this test in DIEHARD includes the runs-down test. The test counts runs-
up and runs-down in a sequence of real-valued random numbers uniformly
distributed on [0, 1). The numbers are obtained from 32-bit integers in the
same way as the squeeze test.

The covariance matrices for the runs-up and runs-down are well known,
leading to chi-square tests for quadratic forms in the weak inverses of the
covariance matrices. The runs are counted for sequences of length 10,000
and this is repeated 10 times to yield a p-value. Furthermore, this process is
repeated twice.

25



3.3.16 Craps test

This test simulates the game of craps where a player always makes a “pass-
line” bet. The craps game is based on the rolls of 2 dice. For the first throw
of the dice (“come-out roll”), the player wins the pass-line bet if the come-out
roll is either a 7 or 11. The player loses the pass-line bet if the come-out roll
is a 2, 3 or 12 (Craps). If the come-out roll is any other than the above (4,
5, 6, 8, 9, 10), the roll is set to a “point” and the game continues. For the
second throw or later, the player wins if the point appears again before a 7
is rolled. The player loses if a 7 is rolled before the point appears again.

Each 32-bit random integer I provides the value for the throw of a die
with (I/232)×6+1. The test in DIEHARD plays 200000 games of craps and
counts the number of wins and the number of throws necessary to end each
game. The number of wins j should be (very close to) a normal with mean
µ = 200000p and variance σ2 = 200000p(1 − p) with p = 244/495. Thus
(j − µ)/σ should be a standard normal variate that yields a p-value.

The number of throws necessary to complete the game can vary from 1 to
infinity, but counts for all larger than 21 are lumped with 21. A chi-square
test is performed on the counts for the number of throws to provide a p-value.

4 Test Results

4.1 Results for the spectral test

In order to perform the spectral test, we employed an algorithm proposed by
Hopkins [8]. We transformed a provided source code written in Fortran 66
into a script bc that is an arbitrary precision numeric processing language
supported by Free Software Foundation [14]. With the bc script, we obtained
the measures µt(m, g), St(m, g) and MT (m, g).

At first, we obtained the measures for LCG(69069, 0, 232) and LCG(69069,
1, 232) to verify that the transformed script works correctly. These RNGs are
proposed by Marsaglia [15] and the values of µt(m, g) and St(m, g) are listed
in literatures [3, p. 107] and [16, p. 616]. Tables 2 and 3 show the results of
the spectral test for the above LCGs. Our results are in very good agreement
with Fishman’s and Knuth’s ones. Therefore, it has been verified that the
transformed script gives correct values.
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Table 2: Results of the spectral test for LCG(69069, 0, 232)

Our results Fishman[16, p. 616]
Dimension (t) µt(69069, 0, 232) St(69069, 0, 232) St(69069, 0, 232)

2 0.7759 0.4625 0.4625
3 0.1819 0.3131 0.3131
4 0.4312 0.4572 0.4572
5 0.7694 0.5529 0.5529
6 0.0682 0.3767 0.3767

Table 3: Results of the spectral test for LCG(69069, 1, 232)

Our results Knuth[3, p. 107]
Dimension (t) µt(69069, 1, 232) St(69069, 1, 232) µt(69069, 1, 232)

2 3.1037 0.9250 3.10
3 2.9099 0.7890 2.91
4 3.2036 0.7548 3.20
5 5.0065 0.8042 5.01
6 0.0171 0.2990 0.02

Table 4 shows the results of the spectral test for the current MCNP
RNG and LCGs proposed as new MCNP RNGs. The µt values less than 0.1
are bold-faced. According to Knuth’s criterion, the MCNP RNG pass the
spectral test but the extended LCGs (LCG 2 ∼ 7) fail. This indicates that
simple extension from the original MCNP RNG to 63-LCGs are not good.

On the other hand, other 63-bit LCGs proposed by L’Ecuyer, of course,
pass the test with excellent µt or St values because their multipliers are chosen
based on this test. Our M8 values coincide with the values in L’Ecuyer’s
paper [2]. It also ensures that our program calculates correct results of the
spectral test.
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Table 4: Results of the spectral test for LCGs proposed as new MCNP RNGs

Dimension (t) 2 3 4 5 6 7 8
LCG(519, 0, 248)

µt 3.0233 0.1970 1.8870 0.9483 1.8597 0.8802 1.2931
St 0.9129 0.3216 0.6613 0.5765 0.6535 0.5844 0.6129

LCG(519, 0, 263)
µt 1.7321 2.1068 2.7781 1.4379 0.0825 2.0043 5.9276
St 0.6910 0.7085 0.7284 0.6266 0.3888 0.6573 0.7414

LCG(523, 0, 263)
µt 0.0028 1.9145 2.4655 5.4858 0.3327 0.2895 6.6286
St 0.0280 0.6863 0.7070 0.8190 0.4906 0.4986 0.7518

LCG(525, 0, 263)
µt 0.3206 1.8083 0.0450 3.0128 0.3270 3.1053 0.4400
St 0.2973 0.6733 0.2598 0.7265 0.4892 0.6998 0.5356

LCG(519, 1, 263)
µt 1.7321 2.9253 2.4193 0.3595 0.0206 0.5011 1.6439
St 0.6910 0.7904 0.7036 0.4749 0.3086 0.5392 0.6316

LCG(523, 1, 263)
µt 0.0007 2.8511 2.5256 3.1271 4.5931 1.8131 4.2919
St 0.0140 0.7837 0.7112 0.7319 0.7598 0.6480 0.7121

LCG(525, 1, 263)
µt 0.0801 3.4624 1.3077 1.0853 1.4452 0.7763 1.3524
St 0.1486 0.8361 0.6033 0.5923 0.6266 0.5740 0.6163

LCG(3512401965023503517, 0, 263)
µt 2.9062 2.9016 3.1105 4.0325 5.3992 6.7498 7.2874
St 0.8951 0.7883 0.7493 0.7701 0.7806 0.7818 0.7608

LCG(2444805353187672469, 0, 263)
µt 2.2588 2.4430 6.4021 2.9364 3.0414 5.4274 4.6180
St 0.7891 0.7443 0.8974 0.7228 0.7094 0.7579 0.7186

LCG(1987591058829310733, 0, 263)
µt 2.4898 3.4724 1.7071 2.5687 2.1243 2.0222 4.1014
St 0.8285 0.8369 0.6449 0.7037 0.6682 0.6582 0.7080

LCG(9219741426499971445, 1, 263)
µt 2.8509 2.8046 3.5726 3.8380 3.8295 6.4241 6.8114
St 0.8865 0.7794 0.7757 0.7625 0.7371 0.7763 0.7544

LCG(2806196910506780709, 1, 263)
µt 1.9599 4.0204 4.4591 3.1152 3.0728 3.0111 3.7947
St 0.7350 0.8788 0.8199 0.7314 0.7106 0.6967 0.7012

LCG(3249286849523012805, 1, 263)
µt 2.4594 2.4281 3.7081 2.8333 3.7633 3.0844 1.9471
St 0.8234 0.7428 0.7829 0.7176 0.7350 0.6991 0.6451
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4.2 Results for standard test suite

All tests calculate the values of a test statistic and they are evaluated with
chi-square or K-S goodness-of-fit tests. As described in Section 3.2, all the
standard tests except for the collision test in SPRNG includes two steps; the
first step is a chi-square or K-S test for subsequences and the second step
is a K-S test for the resultant percentiles in the first step. This procedure
is called a second-order test [18] or a two-level test [19] and may tend to
detect both local and global nonrandomness of a random number sequence
[3, p. 52]. The collision test in SPRNG is a first-order or single-level test.

The goodness-of-fit test yields a p-value defined by

p = F (t) = Pr(T < t) (21)

where F (t) is a distribution function for a value t of a test statistic T and T
is a random variable. The p-value means that a test statistic is less than t
with probability p. For the chi-square and K-S tests, F (t) is the chi-square
distribution and a distribution derived by Birnbaum [20], respectively. The
approximated form of the distribution is often used for the K-S test [21] and
the SPRNG test routines use this form.

RNGs are evaluated by the p-value. A RNG fails a test if a p-value of the
test is close to 0 or 1. Otherwise, the RNG passes the test. The most difficult
problem for the evaluation is to determine a significance level. The level is
usually 0.05 or 0.01 which is based on experiences. In this work, we set the
significance level to 0.01 and perform each test 3 times for disjoint random
number sequences. We consider that a RNG fails only if all 3 p-values are
less than 0.01 (1%) or larger than 0.99 (99%).

One requires some parameters for the standard tests since the default val-
ues are not provided for them in SPRNG. We have chosen them from papers
where some parameters are listed. The parameters used are L’Ecuyer’s[13]
and Vattulainen’s set[22] listed in Table 5 and 6, respectively.

Using these parameters, we performed the standard tests for all 13 RNGs
in the new MCNP random package. Each test was repeated 3 times for 3
disjoint random number sequences. To ensure the sequences are disjoint, an
initial seed for each sequence is set to the final value of the previous sequence.
Namely, we used 3 consecutive sequences.

Tables 7 ∼ 19 show the results of the standard tests for 13 RNGs. Sus-
picious p-values that are less than 0.01 (1%) or larger than 0.99 (99%) are
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bold-faced. All the RNGs pass all the tests for L’Ecuyer’s and Vattulainen’s
test suites.

Table 5: Parameters for L’Ecuyer’s test suite

Standard tests Parameters Test ID

Equidistribution N = 104, n = 103, d = 64 LEC01
N = 104, n = 104, d = 256 LEC02

Serial N = 103, n = 105, d = 64 LEC03
Gap N = 103, n = 104, a = 0.0, b = 0.05, t = 15 LEC04

N = 103, n = 104, a = 0.95, b = 1.0, t = 15 LEC05
N = 103, n = 104, a = 1/3, b = 2/3, t = 10 LEC06

Poker N = 103, n = 104, k = 4, d = 4 LEC07
N = 103, n = 104, k = 6, d = 8 LEC08
N = 103, n = 104, k = 8, d = 16 LEC09

Coupon N = 103, n = 104, d = 5, t = 25 LEC10
Permutation N = 103, n = 104, t = 3 LEC11

N = 103, n = 104, t = 5 LEC12
Runs-up N = 103, n = 105, t = 6∗ LEC13
Maximum of t N = 103, n = 104, t = 8 LEC14
Collision N = 102, n = 2 × 104, log md = 6, log d = 3 LEC15

N = 102, n = 2 × 104, log md = 10, log d = 2 LEC16
N = 102, n = 2 × 104, log md = 20, log d = 1 LEC17

N is the number of times the test was repeated for the (second-
level) K-S test. n is the length of the random number sequence.
Other parameters are described in Section 3.2.
∗) t is not listed in the paper[13], so it is set to the same value as
Vattulainen’s value for the runs-up test.
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Table 6: Parameters for Vattulainen’s test suite

Standard tests Parameters Test ID

Equidistribution N = 104, n = 104, d = 128 VAT01
N = 104, n = 105, d = 256 VAT02

Serial N = 103, n = 105, d = 100 VAT03
Gap N = 103, n = 2.5× 104, a = 0.0, b = 0.05, t =

30
VAT04

N = 103, n = 2.5 × 104, a = 0.45, b =
0.55, t = 30

VAT05

N = 103, n = 2.5× 104, a = 0.95, b = 1.0, t =
30

VAT06

Runs-up∗ N = 103, n = 105, t = 6 VAT07
Maximum of t N = 103, n = 2 × 103, t = 5 VAT08

N = 103, n = 2 × 103, t = 3 VAT08
Collision N = 103, n = 214, log md = 2, log d = 10 VAT10

N = 103, n = 214, log md = 4, log d = 5 VAT11
N = 103, n = 214, log md = 10, log d = 2 VAT12

N is the number of times the test was repeated for the (second-
level) K-S test. n is the length of the random number sequence.
Other parameters are described in Section 3.2.
∗) Same as L’Ecuyer’s runs-up test.
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Table 7: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(519, 0, 248)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 49.94 75.04 99.38

LEC02 54.36 84.90 40.75
Serial LEC03 90.24 80.66 38.01
Gap LEC04 56.79 61.72 18.74

LEC05 49.91 2.09 24.06
LEC06 89.51 65.11 87.18

Poker LEC07 59.01 21.28 38.66
LEC08 7.51 95.66 26.90
LEC09 11.25 92.17 85.69

Coupon LEC10 40.25 97.48 28.11
Permutation LEC11 22.26 52.56 54.19

LEC12 67.54 66.14 61.76
Runs-up LEC13 49.87 39.21 92.83
Maximum of t LEC14 52.26 37.63 87.46
Collision LEC15 95.61 61.32 96.24

LEC16 8.00 95.67 93.13
LEC17 9.33 72.21 73.29

Vattulainen’s test suite
Equidistribution VAT01 64.71 16.00 69.64

VAT02 42.17 43.39 48.46
Serial VAT03 31.45 93.43 88.68
Gap VAT04 1.43 27.75 78.76

VAT05 55.15 83.40 34.84
VAT06 11.12 45.22 1.45

Runs-up VAT07 49.87 39.21 92.83
Maximum of t VAT08 39.03 66.30 41.71

VAT09 81.50 46.55 77.76
Collision VAT10 49.21 21.66 78.34

VAT11 27.68 63.79 11.94
VAT12 90.80 48.09 51.65
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Table 8: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(519, 0, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 95.61 49.15 43.86

LEC02 7.68 50.20 74.52
Serial LEC03 18.03 97.98 11.65
Gap LEC04 37.73 71.36 79.00

LEC05 68.33 30.14 45.35
LEC06 45.81 48.95 91.66

Poker LEC07 60.72 28.14 30.19
LEC08 33.67 69.57 96.30
LEC09 57.81 81.96 7.30

Coupon LEC10 58.37 99.64 40.32
Permutation LEC11 91.65 52.83 67.19

LEC12 1.24 49.35 14.86
Runs-up LEC13 61.42 11.97 85.93
Maximum of t LEC14 32.73 89.29 94.39
Collision LEC15 12.57 27.34 29.43

LEC16 92.09 54.02 51.15
LEC17 91.57 16.30 36.57

Vattulainen’s test suite
Equidistribution VAT01 26.06 4.13 94.13

VAT02 49.22 28.22 83.85
Serial VAT03 83.31 36.07 90.10
Gap VAT04 70.22 82.45 49.52

VAT05 88.86 69.45 47.13
VAT06 59.50 8.70 36.74

Runs-up VAT07 61.42 11.97 85.93
Maximum of t VAT08 47.35 0.11 34.25

VAT09 80.81 10.19 10.96
Collision VAT10 9.48 90.53 36.32

VAT11 18.96 24.84 13.26
VAT12 78.94 87.87 14.92
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Table 9: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(523, 0, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 26.96 90.63 82.37

LEC02 24.63 87.94 99.31
Serial LEC03 22.01 71.44 32.92
Gap LEC04 89.94 19.32 6.98

LEC05 97.79 89.05 14.95
LEC06 90.78 31.90 14.66

Poker LEC07 43.79 13.93 14.15
LEC08 81.53 4.70 77.55
LEC09 73.58 67.87 54.33

Coupon LEC10 98.91 97.38 47.62
Permutation LEC11 10.24 27.34 14.11

LEC12 78.32 81.47 95.96
Runs-up LEC13 44.39 18.39 66.05
Maximum of t LEC14 73.77 59.14 16.98
Collision LEC15 35.46 43.76 67.37

LEC16 8.83 50.78 24.68
LEC17 25.52 61.10 72.94

Vattulainen’s test suite
Equidistribution VAT01 23.04 68.04 99.31

VAT02 19.89 74.40 32.44
Serial VAT03 95.96 66.15 49.78
Gap VAT04 60.42 77.52 56.76

VAT05 14.99 53.08 5.36
VAT06 70.86 11.22 3.68

Runs-up VAT07 44.39 18.39 66.05
Maximum of t VAT08 18.46 78.19 59.45

VAT09 46.39 17.90 40.59
Collision VAT10 72.54 64.95 23.75

VAT11 8.24 11.02 2.43
VAT12 72.51 66.78 50.87
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Table 10: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(525, 0, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 79.90 93.18 91.06

LEC02 45.11 95.23 47.81
Serial LEC03 67.51 41.70 47.44
Gap LEC04 79.52 99.50 35.82

LEC05 60.67 39.82 17.22
LEC06 81.25 35.42 79.54

Poker LEC07 92.15 22.99 41.65
LEC08 59.97 76.01 85.39
LEC09 37.14 71.88 56.06

Coupon LEC10 3.35 25.23 30.14
Permutation LEC11 94.35 15.26 53.83

LEC12 23.50 21.08 58.38
Runs-up LEC13 47.01 72.52 71.53
Maximum of t LEC14 41.59 23.38 69.78
Collision LEC15 96.42 8.60 3.49

LEC16 75.87 47.61 93.83
LEC17 55.07 62.55 89.67

Vattulainen’s test suite
Equidistribution VAT01 50.55 80.78 70.03

VAT02 70.72 88.85 17.46
Serial VAT03 83.63 54.71 72.20
Gap VAT04 46.24 64.44 46.54

VAT05 39.12 54.10 74.76
VAT06 18.02 6.66 19.82

Runs-up VAT07 47.01 72.52 71.53
Maximum of t VAT08 37.92 54.86 24.81

VAT09 9.19 16.34 2.86
Collision VAT10 65.12 79.31 54.81

VAT11 34.12 42.18 89.77
VAT12 76.90 27.58 23.83
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Table 11: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(519, 1, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 37.75 98.47 97.25

LEC02 2.20 15.85 9.76
Serial LEC03 85.94 77.91 34.27
Gap LEC04 74.35 40.43 23.34

LEC05 65.00 3.31 94.58
LEC06 10.57 4.85 36.63

Poker LEC07 15.82 10.03 76.45
LEC08 32.75 34.97 9.39
LEC09 2.26 90.75 81.20

Coupon LEC10 34.13 28.71 64.86
Permutation LEC11 75.58 93.36 90.57

LEC12 83.84 38.55 92.90
Runs-up LEC13 85.70 64.07 75.10
Maximum of t LEC14 63.92 70.40 34.82
Collision LEC15 18.13 77.26 26.97

LEC16 65.52 11.54 12.91
LEC17 16.14 33.95 50.35

Vattulainen’s test suite
Equidistribution VAT01 42.92 98.81 48.52

VAT02 30.77 29.72 88.60
Serial VAT03 98.25 69.72 0.83
Gap VAT04 59.80 57.33 50.33

VAT05 53.91 61.56 63.91
VAT06 37.34 81.74 40.55

Runs-up VAT07 85.70 64.07 75.10
Maximum of t VAT08 30.25 80.76 27.23

VAT09 47.69 7.43 59.61
Collision VAT10 5.95 75.31 72.28

VAT11 83.64 84.87 7.94
VAT12 54.09 58.00 8.29
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Table 12: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(523, 1, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 33.78 95.14 89.04

LEC02 76.59 44.33 86.22
Serial LEC03 77.63 10.18 34.20
Gap LEC04 36.10 77.62 87.70

LEC05 31.16 29.40 48.42
LEC06 90.97 27.42 49.18

Poker LEC07 62.23 40.58 72.69
LEC08 64.77 89.30 11.11
LEC09 72.97 75.33 87.47

Coupon LEC10 23.73 65.07 88.32
Permutation LEC11 68.21 32.47 21.60

LEC12 86.50 88.58 92.04
Runs-up LEC13 17.84 6.17 68.51
Maximum of t LEC14 14.21 95.66 68.62
Collision LEC15 2.82 19.73 98.52

LEC16 71.06 31.75 52.53
LEC17 83.93 27.00 64.96

Vattulainen’s test suite
Equidistribution VAT01 41.97 72.84 35.51

VAT02 82.31 37.91 41.86
Serial VAT03 86.87 11.50 87.55
Gap VAT04 43.40 93.39 19.63

VAT05 87.92 53.51 65.02
VAT06 65.55 42.36 0.99

Runs-up VAT07 17.84 6.17 68.51
Maximum of t VAT08 0.71 1.67 12.30

VAT09 23.83 80.75 63.27
Collision VAT10 61.06 89.98 68.18

VAT11 45.48 47.67 9.98
VAT12 11.58 22.94 97.77

37



Table 13: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(525, 1, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 99.69 62.21 92.75

LEC02 9.07 54.40 51.48
Serial LEC03 37.41 44.02 85.73
Gap LEC04 34.00 80.48 0.76

LEC05 53.83 21.94 55.44
LEC06 20.15 81.59 24.71

Poker LEC07 55.38 7.63 11.06
LEC08 40.00 15.39 4.67
LEC09 54.16 7.28 54.47

Coupon LEC10 52.43 30.01 29.40
Permutation LEC11 47.82 62.82 38.59

LEC12 69.91 5.07 95.52
Runs-up LEC13 35.05 83.26 8.75
Maximum of t LEC14 82.23 58.21 40.34
Collision LEC15 97.12 95.28 20.24

LEC16 29.03 42.35 7.94
LEC17 21.37 34.13 25.30

Vattulainen’s test suite
Equidistribution VAT01 18.14 88.64 48.88

VAT02 3.61 62.97 81.79
Serial VAT03 35.25 31.10 95.36
Gap VAT04 73.46 3.09 59.98

VAT05 60.76 62.98 80.49
VAT06 79.11 97.23 30.52

Runs-up VAT07 35.05 83.26 8.75
Maximum of t VAT08 45.03 46.19 60.64

VAT09 50.68 0.55 64.95
Collision VAT10 41.02 62.24 75.09

VAT11 36.51 78.98 84.25
VAT12 51.07 18.92 40.06
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Table 14: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(3512401965023503517, 0, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 78.94 95.74 77.90

LEC02 78.81 24.96 47.98
Serial LEC03 3.97 10.42 92.03
Gap LEC04 7.11 69.07 93.96

LEC05 57.08 77.35 59.15
LEC06 35.98 53.18 10.07

Poker LEC07 84.66 19.67 41.14
LEC08 62.51 23.18 71.31
LEC09 73.33 7.01 76.54

Coupon LEC10 38.70 6.32 49.40
Permutation LEC11 31.19 58.89 99.06

LEC12 53.44 83.87 71.22
Runs-up LEC13 41.22 10.90 59.35
Maximum of t LEC14 50.85 20.80 10.02
Collision LEC15 29.85 28.54 17.82

LEC16 27.34 12.05 80.14
LEC17 65.85 76.39 2.44

Vattulainen’s test suite
Equidistribution VAT01 44.03 60.90 63.39

VAT02 51.33 86.86 14.12
Serial VAT03 37.72 91.31 63.58
Gap VAT04 58.42 4.11 44.37

VAT05 43.06 35.81 78.08
VAT06 92.01 67.67 80.22

Runs-up VAT07 41.22 10.90 59.35
Maximum of t VAT08 92.83 41.62 54.79

VAT09 43.62 6.01 95.66
Collision VAT10 46.00 68.38 56.47

VAT11 70.06 65.61 40.86
VAT12 86.35 34.77 48.93
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Table 15: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(2444805353187672469, 0, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 95.14 79.03 71.62

LEC02 76.57 37.08 10.07
Serial LEC03 80.74 85.03 89.33
Gap LEC04 14.41 60.21 8.88

LEC05 7.49 46.79 2.62
LEC06 59.45 28.83 28.25

Poker LEC07 2.92 66.94 61.14
LEC08 67.24 25.50 28.00
LEC09 2.00 8.47 32.35

Coupon LEC10 17.68 8.84 9.87
Permutation LEC11 53.91 88.51 47.69

LEC12 37.03 14.60 49.62
Runs-up LEC13 81.47 26.66 24.05
Maximum of t LEC14 84.26 0.89 10.17
Collision LEC15 32.26 71.71 4.81

LEC16 22.48 91.85 13.00
LEC17 58.05 69.64 55.21

Vattulainen’s test suite
Equidistribution VAT01 68.47 18.68 9.81

VAT02 43.67 91.88 80.48
Serial VAT03 54.33 78.96 69.55
Gap VAT04 75.15 15.01 36.87

VAT05 52.24 49.39 83.96
VAT06 24.72 83.97 91.25

Runs-up VAT07 81.47 26.66 24.05
Maximum of t VAT08 60.06 35.55 12.10

VAT09 40.52 32.16 34.65
Collision VAT10 9.84 4.69 69.31

VAT11 15.13 95.90 15.43
VAT12 66.96 12.66 49.03
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Table 16: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(1987591058829310733, 0, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 93.63 98.18 83.34

LEC02 44.22 32.07 64.11
Serial LEC03 16.66 1.69 87.15
Gap LEC04 30.77 52.82 92.52

LEC05 56.67 85.33 74.06
LEC06 31.34 99.14 95.24

Poker LEC07 85.58 48.08 61.77
LEC08 71.88 74.70 18.28
LEC09 20.95 9.82 95.10

Coupon LEC10 52.27 29.82 30.59
Permutation LEC11 55.43 36.28 71.81

LEC12 44.47 52.15 0.81
Runs-up LEC13 68.33 38.44 49.67
Maximum of t LEC14 6.50 58.20 10.07
Collision LEC15 58.59 7.98 13.35

LEC16 52.59 61.64 39.02
LEC17 81.87 32.24 35.01

Vattulainen’s test suite
Equidistribution VAT01 7.50 11.49 63.39

VAT02 53.28 83.74 16.81
Serial VAT03 95.53 13.08 49.88
Gap VAT04 33.58 2.35 23.19

VAT05 36.62 34.77 6.54
VAT06 98.46 73.44 72.81

Runs-up VAT07 68.33 38.44 49.67
Maximum of t VAT08 0.01 2.42 94.93

VAT09 33.16 59.16 0.12
Collision VAT10 82.80 73.07 65.38

VAT11 5.03 94.98 79.47
VAT12 75.33 17.44 87.06

41



Table 17: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(9219741426499971445, 1, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 24.85 78.67 82.55

LEC02 42.85 77.22 57.85
Serial LEC03 55.38 20.50 11.79
Gap LEC04 41.76 45.09 29.37

LEC05 49.80 13.52 69.07
LEC06 39.53 53.32 65.63

Poker LEC07 39.73 82.36 83.06
LEC08 52.00 56.05 2.84
LEC09 15.92 62.70 92.91

Coupon LEC10 19.51 74.37 80.85
Permutation LEC11 54.63 19.24 61.58

LEC12 71.54 88.22 41.67
Runs-up LEC13 64.28 99.15 39.88
Maximum of t LEC14 75.10 89.41 41.23
Collision LEC15 91.19 72.12 39.08

LEC16 19.48 33.83 10.69
LEC17 12.28 19.34 6.48

Vattulainen’s test suite
Equidistribution VAT01 80.62 19.91 0.41

VAT02 43.21 29.23 18.75
Serial VAT03 17.29 21.21 59.01
Gap VAT04 60.03 85.39 27.12

VAT05 64.68 8.28 85.92
VAT06 93.09 12.58 94.04

Runs-up VAT07 64.28 99.15 39.88
Maximum of t VAT08 37.01 30.52 31.36

VAT09 63.52 4.24 49.61
Collision VAT10 57.44 47.03 95.07

VAT11 48.85 29.73 10.39
VAT12 46.97 69.50 99.29
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Table 18: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(2806196910506780709, 1, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 92.74 37.86 28.38

LEC02 40.72 8.17 56.93
Serial LEC03 48.22 35.65 75.22
Gap LEC04 81.04 3.92 12.54

LEC05 24.46 77.22 36.98
LEC06 30.86 45.53 51.56

Poker LEC07 36.62 55.66 30.83
LEC08 57.21 13.14 57.31
LEC09 88.24 27.36 47.30

Coupon LEC10 63.57 42.29 53.57
Permutation LEC11 19.77 39.29 10.97

LEC12 40.55 14.81 63.13
Runs-up LEC13 33.41 52.91 61.23
Maximum of t LEC14 74.45 29.21 80.80
Collision LEC15 49.50 46.01 58.10

LEC16 44.14 39.92 35.97
LEC17 86.57 92.78 61.75

Vattulainen’s test suite
Equidistribution VAT01 26.54 88.15 32.03

VAT02 21.19 17.63 35.18
Serial VAT03 45.69 41.45 24.86
Gap VAT04 90.31 63.12 96.85

VAT05 68.31 93.39 67.05
VAT06 13.00 77.51 92.42

Runs-up VAT07 33.41 52.91 61.23
Maximum of t VAT08 99.21 14.08 98.85

VAT09 57.81 99.87 81.39
Collision VAT10 89.60 17.25 92.17

VAT11 95.37 82.78 55.54
VAT12 51.07 95.45 53.47
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Table 19: Results of L’Ecuyer’s and Vattulainen’s test suites for
LCG(3249286849523012805, 1, 263)

Standard tests Test ID p-value (%)
Run 1 Run 2 Run 3

L’Ecuyer’s test suite
Equidistribution LEC01 58.01 55.33 73.93

LEC02 24.49 16.70 59.74
Serial LEC03 15.71 66.87 16.38
Gap LEC04 96.32 45.69 93.10

LEC05 46.75 91.48 87.00
LEC06 99.75 4.87 75.42

Poker LEC07 35.74 36.17 27.53
LEC08 43.87 2.44 81.31
LEC09 95.64 22.13 58.70

Coupon LEC10 29.65 39.55 40.70
Permutation LEC11 20.87 88.72 66.01

LEC12 56.71 94.88 55.82
Runs-up LEC13 54.55 93.38 48.43
Maximum of t LEC14 36.53 11.47 17.33
Collision LEC15 2.75 40.92 63.38

LEC16 76.24 71.87 96.60
LEC17 56.34 87.44 99.23

Vattulainen’s test suite
Equidistribution VAT01 15.14 47.45 0.93

VAT02 69.21 25.57 36.92
Serial VAT03 8.28 20.48 27.70
Gap VAT04 63.31 94.24 88.31

VAT05 31.39 22.10 49.37
VAT06 13.01 46.26 43.77

Runs-up VAT07 54.55 93.38 48.43
Maximum of t VAT08 59.57 39.89 52.81

VAT09 27.89 92.90 47.17
Collision VAT10 14.14 94.70 98.35

VAT11 44.42 7.91 73.09
VAT12 65.50 6.63 16.15
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We performed another standard tests with different parameters because
the number of RNs tested with L’Ecuyer’s and Vattulainen’s ones is relatively
small for 63-bit LCGs; 1.0 × 107 ∼ 2.0 × 108 for L’Ecuyer’s, 6.0 × 106 ∼
1.0 × 109 for Vattulainen’s. The parameters are taken from Mascagni and
Srinivasan’s test suite [23]. Their tests were, however, performed for multiple
RN sequences interleaved from different LCGs. Since we test a single RN
sequence, we adjust the number of tested RNs so that it is about 1.0× 1011.

The standard tests with Mascagni and Srinivasan’s parameters were per-
formed basically only once for each LCGs because they require relatively long
calculation time. Each test was repeated three times only when the first test
was failed; the first p-value is less than 0.01 (1%) or larger than 0.99 (99%).
Tables 20 ∼ 32 show the results of Mascagni and Srinivasan’s the test suite.
Some RNGs fail a test for the first subsequence but pass the test for the
subsequent subsequences as shown in Table 33. Therefore, we consider that
all the RNGs pass Mascagni and Srinivasan’s test suite.

Table 20: Results of Mascagni and Srinivasan’s test suite for LCG(519, 0, 248)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 1.84
Serial N = 103, n = 5 × 107, d = 100 85.19
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 76.46
Poker N = 103, n = 107, k = 10, d = 10 47.55
Coupon N = 103, n = 5 × 106, d = 10, t = 39 12.01
Permutation N = 103, n = 2 × 107, t = 5 19.60
Runs-up N = 103, n = 5 × 107, t = 10 94.70
Maximum of t N = 105, n = 5 × 104, t = 16 54.21
Collision 1 N = 105, n = 105, log md = 10, log d = 3 2.25
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 99.39

N is the number of times the test was repeated for the (second-
level) K-S test. n is the length of the random number sequence.
Other parameters are described in Section 3.2.
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Table 21: Results of Mascagni and Srinivasan’s test suite for LCG(519, 0, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 88.63
Serial N = 103, n = 5 × 107, d = 100 73.09
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 49.55
Poker N = 103, n = 107, k = 10, d = 10 24.33
Coupon N = 103, n = 5 × 106, d = 10, t = 39 22.54
Permutation N = 103, n = 2 × 107, t = 5 5.11
Runs-up N = 103, n = 5 × 107, t = 10 85.69
Maximum of t N = 105, n = 5 × 104, t = 16 18.97
Collision 1 N = 105, n = 105, log md = 10, log d = 3 53.14
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 36.31

Table 22: Results of Mascagni and Srinivasan’s test suite for LCG(523, 0, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 30.53
Serial N = 103, n = 5 × 107, d = 100 81.58
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 11.85
Poker N = 103, n = 107, k = 10, d = 10 83.83
Coupon N = 103, n = 5 × 106, d = 10, t = 39 49.36
Permutation N = 103, n = 2 × 107, t = 5 32.60
Runs-up N = 103, n = 5 × 107, t = 10 9.19
Maximum of t N = 105, n = 5 × 104, t = 16 13.32
Collision 1 N = 105, n = 105, log md = 10, log d = 3 94.20
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 87.14
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Table 23: Results of Mascagni and Srinivasan’s test suite for LCG(525, 0, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 35.46
Serial N = 103, n = 5 × 107, d = 100 6.53
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 96.69
Poker N = 103, n = 107, k = 10, d = 10 93.82
Coupon N = 103, n = 5 × 106, d = 10, t = 39 25.78
Permutation N = 103, n = 2 × 107, t = 5 89.69
Runs-up N = 103, n = 5 × 107, t = 10 24.73
Maximum of t N = 105, n = 5 × 104, t = 16 21.96
Collision 1 N = 105, n = 105, log md = 10, log d = 3 81.82
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 17.06

Table 24: Results of Mascagni and Srinivasan’s test suite for LCG(519, 1, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 1.70
Serial N = 103, n = 5 × 107, d = 100 47.08
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 42.43
Poker N = 103, n = 107, k = 10, d = 10 19.55
Coupon N = 103, n = 5 × 106, d = 10, t = 39 95.33
Permutation N = 103, n = 2 × 107, t = 5 8.31
Runs-up N = 103, n = 5 × 107, t = 10 74.36
Maximum of t N = 105, n = 5 × 104, t = 16 83.08
Collision 1 N = 105, n = 105, log md = 10, log d = 3 51.17
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 42.04
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Table 25: Results of Mascagni and Srinivasan’s test suite for LCG(523, 1, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 48.25
Serial N = 103, n = 5 × 107, d = 100 68.38
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 29.67
Poker N = 103, n = 107, k = 10, d = 10 53.97
Coupon N = 103, n = 5 × 106, d = 10, t = 39 0.18
Permutation N = 103, n = 2 × 107, t = 5 50.92
Runs-up N = 103, n = 5 × 107, t = 10 8.65
Maximum of t N = 105, n = 5 × 104, t = 16 41.98
Collision 1 N = 105, n = 105, log md = 10, log d = 3 88.46
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 16.24

Table 26: Results of Mascagni and Srinivasan’s test suite for LCG(525, 1, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 93.43
Serial N = 103, n = 5 × 107, d = 100 0.25
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 11.45
Poker N = 103, n = 107, k = 10, d = 10 92.79
Coupon N = 103, n = 5 × 106, d = 10, t = 39 15.04
Permutation N = 103, n = 2 × 107, t = 5 53.21
Runs-up N = 103, n = 5 × 107, t = 10 77.31
Maximum of t N = 105, n = 5 × 104, t = 16 55.16
Collision 1 N = 105, n = 105, log md = 10, log d = 3 84.32
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 57.70
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Table 27: Results of Mascagni and Srinivasan’s test suite for
LCG(3512401965023503517, 0, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 94.90
Serial N = 103, n = 5 × 107, d = 100 51.07
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 76.42
Poker N = 103, n = 107, k = 10, d = 10 2.76
Coupon N = 103, n = 5 × 106, d = 10, t = 39 43.81
Permutation N = 103, n = 2 × 107, t = 5 53.70
Runs-up N = 103, n = 5 × 107, t = 10 63.13
Maximum of t N = 105, n = 5 × 104, t = 16 43.94
Collision 1 N = 105, n = 105, log md = 10, log d = 3 10.61
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 31.16

Table 28: Results of Mascagni and Srinivasan’s test suite for
LCG(2444805353187672469, 0, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 60.11
Serial N = 103, n = 5 × 107, d = 100 51.87
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 9.05
Poker N = 103, n = 107, k = 10, d = 10 98.24
Coupon N = 103, n = 5 × 106, d = 10, t = 39 4.14
Permutation N = 103, n = 2 × 107, t = 5 42.91
Runs-up N = 103, n = 5 × 107, t = 10 24.05
Maximum of t N = 105, n = 5 × 104, t = 16 21.23
Collision 1 N = 105, n = 105, log md = 10, log d = 3 36.45
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 97.41
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Table 29: Results of Mascagni and Srinivasan’s test suite for
LCG(1987591058829310733, 0, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 42.07
Serial N = 103, n = 5 × 107, d = 100 87.83
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 12.55
Poker N = 103, n = 107, k = 10, d = 10 35.50
Coupon N = 103, n = 5 × 106, d = 10, t = 39 86.83
Permutation N = 103, n = 2 × 107, t = 5 46.37
Runs-up N = 103, n = 5 × 107, t = 10 57.69
Maximum of t N = 105, n = 5 × 104, t = 16 6.14
Collision 1 N = 105, n = 105, log md = 10, log d = 3 66.20
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 5.39

Table 30: Results of Mascagni and Srinivasan’s test suite for
LCG(9219741426499971445, 1, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 85.38
Serial N = 103, n = 5 × 107, d = 100 74.15
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 65.03
Poker N = 103, n = 107, k = 10, d = 10 94.35
Coupon N = 103, n = 5 × 106, d = 10, t = 39 31.26
Permutation N = 103, n = 2 × 107, t = 5 53.11
Runs-up N = 103, n = 5 × 107, t = 10 17.55
Maximum of t N = 105, n = 5 × 104, t = 16 62.03
Collision 1 N = 105, n = 105, log md = 10, log d = 3 11.37
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 10.55
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Table 31: Results of Mascagni and Srinivasan’s test suite for
LCG(2806196910506780709, 1, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 34.13
Serial N = 103, n = 5 × 107, d = 100 62.07
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 16.12
Poker N = 103, n = 107, k = 10, d = 10 85.14
Coupon N = 103, n = 5 × 106, d = 10, t = 39 6.20
Permutation N = 103, n = 2 × 107, t = 5 35.12
Runs-up N = 103, n = 5 × 107, t = 10 25.85
Maximum of t N = 105, n = 5 × 104, t = 16 19.91
Collision 1 N = 105, n = 105, log md = 10, log d = 3 12.43
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 38.31

Table 32: Results of Mascagni and Srinivasan’s test suite for
LCG(3249286849523012805, 1, 263)

Standard tests Parameters p-value

Equidistribution N = 5 × 103, n = 2 × 107, d = 10000 42.55
Serial N = 103, n = 5 × 107, d = 100 51.10
Gap N = 103, n = 106, a = 0.50, b = 0.51, t = 200 18.56
Poker N = 103, n = 107, k = 10, d = 10 45.34
Coupon N = 103, n = 5 × 106, d = 10, t = 39 90.72
Permutation N = 103, n = 2 × 107, t = 5 96.23
Runs-up N = 103, n = 5 × 107, t = 10 69.42
Maximum of t N = 105, n = 5 × 104, t = 16 93.61
Collision 1 N = 105, n = 105, log md = 10, log d = 3 95.85
Collision 2 N = 105, n = 2 × 105, log md = 4, log d = 5 84.81
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Table 33: Results of additional tests for RNGs whose first subsequence failed

RNG Failed test p-value (%)
Run 1 Run 2 Run 3

LCG(519, 0, 248) Collision 2 99.39 52.80 6.83
LCG(523, 1, 263) Coupon 0.18 89.81 44.10
LCG(525, 1, 263) Serial 0.25 44.82 85.60

4.3 Results for DIEHARD test suite

The DIEHARD tests were also performed for all thirteen RNGs. For the
tests, we set two significance levels depending on each test. In the case
where a test returns more than five p-values, we set a significance level to
0.01 and consider that a RNG fails the test if we get six or more p-values less
than 0.01 or more than 0.99. When a test returns more than two and less
than six p-values, we consider that a RNG fails the test if all p-values are
less than 0.01 or more than 0.99. When a test returns only one p-value, we
set a significance level to 0.005. Namely, a RNG fails the test if the p-value
is less than 0.005 or more than 0.995.

Tables 35 ∼ 47 shows the results of the DIEHARD tests. Since the name
of each test is slightly long, it is designated for short as listed in Table 34.
The p-values less than 0.01 or more than 0.99 are bold-faced.

The MCNP RNG (LCG(519, 0, 248)) fails the OPSO, OQSO and DNA
tests as shown in Table 35. In particular, less significant (lower) bits of
RNs fail the tests. It is considered that these failures in less significant bits
are caused by the shorter period than the significant bits as mentioned in
Section 2.1. However, it does not seems that these failures have a significant
impact in the practical use of the RNG.

On the other hand, all 63-bit LCGs pass all the tests though some p-
values are less than 0.01 or more than 0.99. No failures are found in less
significant bits for the OPSO, OQSO and DNA tests as found for the MCNP
RNG.
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Table 34: Short names for DIEHARD test suite

Full name Short name

Birthday spacings test BDAY
Overlapping 5-permutation test OPERM
Binary rank test RANK
Bitstream test BSTREAM
Overlapping-pairs-sparse-occupancy test OPSO
Overlapping-quadruples-sparse-occupancy test OQSO
DNA test DNA
Count-the-1’s test on a stream of bytes COUNT1S
Count-the-1’s test for specific bytes COUNT1B
Parking lot test PARKING
Minimum distance test MDIST
3-D sphere test SPHERE
Squeeze test SQUEEZE
Overlapping sums test OSUMS
Runs test RUNS
Craps test CRAPS
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Table 35: DIEHARD test results for LCG(519, 0, 248)

Test p-value

BDAY bits 1 to 24 0.272790
bits 2 to 25 0.821532
bits 3 to 25 0.653590
bits 4 to 25 0.147015
bits 5 to 25 0.784672
bits 6 to 25 0.340978
bits 7 to 25 0.595325
bits 8 to 25 0.014017
bits 9 to 25 0.825536

K-S test for 9 p-values 0.115065
OPERM 1st 0.898243

2nd 0.298070
RANK 31 × 31 0.347048
RANK 32 × 32 0.754761
RANK 6 × 8 bits 1 to 8 0.633029

bits 2 to 9 0.527127
bits 3 to 10 0.569367
bits 4 to 11 0.569367
bits 5 to 12 0.186756
bits 6 to 13 0.208039
bits 7 to 14 0.647876
bits 8 to 15 0.849943
bits 9 to 16 0.082948
bits 10 to 17 0.102796
bits 11 to 18 0.041357
bits 12 to 19 0.770574
bits 13 to 20 0.518207
bits 14 to 21 0.008043
bits 15 to 22 0.772758
bits 16 to 23 0.230369
bits 17 to 24 0.032800
bits 18 to 25 0.821333
bits 19 to 26 0.656534
bits 20 to 27 0.545310
bits 21 to 28 0.303901
bits 22 to 29 0.129923
bits 23 to 30 0.477979
bits 24 to 31 0.031384
bits 25 to 32 0.342400

K-S test for 25 p-values 0.891195
BSTREAM 1st 0.18773

2nd 0.90955
3rd 0.97771
4th 0.31904
5th 0.25549
6th 0.20586
7th 0.07795
8th 0.37504
9th 0.69037
10th 0.38037
11th 0.34964
12th 0.62437
13th 0.16768

Test p-value

14th 0.86830
15th 0.71385
16th 0.16885
17th 0.36183
18th 0.62082
19th 0.14960
20th 0.02271

OPSO bits 23 to 32 0.0000
bits 22 to 31 0.0000
bits 21 to 30 0.0000
bits 20 to 29 0.0000
bits 19 to 28 0.0001
bits 18 to 27 0.6639
bits 17 to 26 0.0445
bits 16 to 25 0.0125
bits 15 to 24 0.7683
bits 14 to 23 0.9712
bits 13 to 22 0.1077
bits 12 to 21 0.0717
bits 11 to 20 0.7457
bits 10 to 19 0.0598
bits 9 to 18 0.1122
bits 8 to 17 0.4597
bits 7 to 16 0.0011
bits 6 to 15 0.6319
bits 5 to 14 0.7490
bits 4 to 13 0.2914
bits 3 to 12 0.1792
bits 2 to 11 0.3253
bits 1 to 10 0.7277

OQSO bits 28 to 32 1.0000
bits 27 to 31 1.0000
bits 26 to 30 1.0000
bits 25 to 29 1.0000
bits 24 to 28 1.0000
bits 23 to 27 1.0000
bits 22 to 26 0.0000
bits 21 to 25 0.0000
bits 20 to 24 0.0000
bits 19 to 23 0.1906
bits 18 to 22 0.0011
bits 17 to 21 0.3823
bits 16 to 20 0.8394
bits 15 to 19 0.2518
bits 14 to 18 0.6487
bits 13 to 17 0.5575
bits 12 to 16 0.1634
bits 11 to 15 0.6600
bits 10 to 14 0.2096
bits 9 to 13 0.3759
bits 8 to 12 0.9191
bits 7 to 11 0.8554
bits 6 to 10 0.5535
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Test p-value

bits 5 to 9 0.4955
bits 4 to 8 0.0868
bits 3 to 7 0.1943
bits 2 to 6 0.8554
bits 1 to 5 0.7421

DNA bits 31 to 32 1.0000
bits 30 to 31 1.0000
bits 29 to 30 1.0000
bits 28 to 29 1.0000
bits 27 to 28 1.0000
bits 26 to 27 0.1777
bits 25 to 26 0.0000
bits 24 to 25 0.0000
bits 23 to 24 0.0000
bits 22 to 23 0.0000
bits 21 to 22 0.0000
bits 20 to 21 0.4937
bits 19 to 20 0.0613
bits 18 to 19 0.2383
bits 17 to 18 0.4831
bits 16 to 17 0.0925
bits 15 to 16 0.0197
bits 14 to 15 0.7377
bits 13 to 14 0.7171
bits 12 to 13 0.0309
bits 11 to 12 0.2803
bits 10 to 11 0.8440
bits 9 to 10 0.4550
bits 8 to 9 0.4737
bits 7 to 8 0.7834
bits 6 to 7 0.4063
bits 5 to 6 0.8959
bits 4 to 5 0.3438
bits 3 to 4 0.3972
bits 2 to 3 0.8986
bits 1 to 2 0.5407

COUNT1S 1st 0.681751
2nd 0.255342

COUNT1B bits 1 to 8 0.434733
bits 2 to 9 0.718919
bits 3 to 10 0.144793
bits 4 to 11 0.685012
bits 5 to 12 0.683909
bits 6 to 13 0.502358
bits 7 to 14 0.821357
bits 8 to 15 0.375545
bits 9 to 16 0.214134
bits 10 to 17 0.735128
bits 11 to 18 0.345899
bits 12 to 19 0.798844
bits 13 to 20 0.211146
bits 14 to 21 0.301943
bits 15 to 22 0.920976
bits 16 to 23 0.579146
bits 17 to 24 0.982771
bits 18 to 25 0.316536
bits 19 to 26 0.941200

Test p-value

bits 20 to 27 0.411558
bits 21 to 28 0.542480
bits 22 to 29 0.456693
bits 23 to 30 0.308035
bits 24 to 31 0.858280
bits 25 to 32 0.759437

PARKING 1st 0.276387
2nd 0.518210
3rd 0.554479
4th 0.590298
5th 0.427537
6th 0.146807
7th 0.738676
8th 0.554479
9th 0.409702
10th 0.954438

K-S test for 10 p-values 0.390666
MDIST 0.954438
SPHERE 1st 0.98097

2nd 0.96610
3rd 0.89832
4th 0.54591
5th 0.25548
6th 0.23249
7th 0.90286
8th 0.68392
9th 0.48022
10th 0.83227
11th 0.93155
12th 0.29180
13th 0.69449
14th 0.45707
15th 0.32792
16th 0.23009
17th 0.23249
18th 0.30696
19th 0.48874
20th 0.39255

K-S test for 20 p-values 0.681575
SQUEEZE 0.439234
OSUMS 1st 0.579097

2nd 0.426215
3nd 0.748657
4nd 0.347650
5nd 0.349957
6nd 0.625698
7nd 0.381223
8nd 0.496659
9nd 0.754814
10nd 0.121868

K-S test for 10 p-values 0.539464
RUNS UP 1st 0.571959

DOWN 1st 0.198622
UP 2nd 0.776445
DOWN 2nd 0.558044

CRAPS No. of wins 0.909541
Throws/game 0.049474
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Table 36: DIEHARD test results for LCG(519, 0, 263)

Test p-value

BDAY bits 1 to 24 0.456631
bits 2 to 25 0.934950
bits 3 to 25 0.395226
bits 4 to 25 0.151227
bits 5 to 25 0.436915
bits 6 to 25 0.881191
bits 7 to 25 0.694738
bits 8 to 25 0.630287
bits 9 to 25 0.010339

K-S test for 9 p-values 0.052709
OPERM 1st 0.997566

2nd 0.793837
RANK 31 × 31 0.588108
RANK 32 × 32 0.617617
RANK 6 × 8 bits 1 to 8 0.302278

bits 2 to 9 0.904982
bits 3 to 10 0.468827
bits 4 to 11 0.540425
bits 5 to 12 0.916199
bits 6 to 13 0.816692
bits 7 to 14 0.762551
bits 8 to 15 0.225721
bits 9 to 16 0.597547
bits 10 to 17 0.116105
bits 11 to 18 0.856230
bits 12 to 19 0.951742
bits 13 to 20 0.821750
bits 14 to 21 0.042335
bits 15 to 22 0.519765
bits 16 to 23 0.465420
bits 17 to 24 0.844583
bits 18 to 25 0.815318
bits 19 to 26 0.053148
bits 20 to 27 0.914019
bits 21 to 28 0.903223
bits 22 to 29 0.475548
bits 23 to 30 0.351186
bits 24 to 31 0.100732
bits 25 to 32 0.914019

K-S test for 25 p-values 0.681956
BSTREAM 1st 0.47082

2nd 0.07200
3rd 0.99618
4th 0.86171
5th 0.70343
6th 0.97074
7th 0.00814
8th 0.64197
9th 0.76317
10th 0.70826
11th 0.17420
12th 0.01066
13th 0.34792

Test p-value

14th 0.34189
15th 0.32406
16th 0.95865
17th 0.18460
18th 0.38572
19th 0.50249
20th 0.17905

OPSO bits 23 to 32 0.7311
bits 22 to 31 0.0011
bits 21 to 30 0.6319
bits 20 to 29 0.7490
bits 19 to 28 0.2914
bits 18 to 27 0.1792
bits 17 to 26 0.3253
bits 16 to 25 0.7277
bits 15 to 24 0.5257
bits 14 to 23 0.4913
bits 13 to 22 0.8678
bits 12 to 21 0.7673
bits 11 to 20 0.5612
bits 10 to 19 0.8377
bits 9 to 18 0.4284
bits 8 to 17 0.0658
bits 7 to 16 0.2547
bits 6 to 15 0.9948
bits 5 to 14 0.9303
bits 4 to 13 0.2670
bits 3 to 12 0.6639
bits 2 to 11 0.2843
bits 1 to 10 0.3790

OQSO bits 28 to 32 0.5575
bits 27 to 31 0.1634
bits 26 to 30 0.6600
bits 25 to 29 0.2096
bits 24 to 28 0.3759
bits 23 to 27 0.9191
bits 22 to 26 0.8554
bits 21 to 25 0.5535
bits 20 to 24 0.4955
bits 19 to 23 0.0868
bits 18 to 22 0.1943
bits 17 to 21 0.8554
bits 16 to 20 0.7421
bits 15 to 19 0.9408
bits 14 to 18 0.9062
bits 13 to 17 0.2887
bits 12 to 16 0.4190
bits 11 to 15 0.3492
bits 10 to 14 0.5588
bits 9 to 13 0.9693
bits 8 to 12 0.7377
bits 7 to 11 0.6348
bits 6 to 10 0.8912
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Test p-value

bits 5 to 9 0.7829
bits 4 to 8 0.9443
bits 3 to 7 0.4456
bits 2 to 6 0.8912
bits 1 to 5 0.5225

DNA bits 31 to 32 0.0925
bits 30 to 31 0.0197
bits 29 to 30 0.7377
bits 28 to 29 0.7171
bits 27 to 28 0.0309
bits 26 to 27 0.2803
bits 25 to 26 0.8440
bits 24 to 25 0.4550
bits 23 to 24 0.4737
bits 22 to 23 0.7834
bits 21 to 22 0.4063
bits 20 to 21 0.8959
bits 19 to 20 0.3438
bits 18 to 19 0.3972
bits 17 to 18 0.8986
bits 16 to 17 0.5407
bits 15 to 16 0.3624
bits 14 to 15 0.9057
bits 13 to 14 0.8468
bits 12 to 13 0.7290
bits 11 to 12 0.7019
bits 10 to 11 0.8603
bits 9 to 10 0.9227
bits 8 to 9 0.6313
bits 7 to 8 0.5020
bits 6 to 7 0.8583
bits 5 to 6 0.0732
bits 4 to 5 0.2893
bits 3 to 4 0.6833
bits 2 to 3 0.2627
bits 1 to 2 0.9101

COUNT1S 1st 0.360386
2nd 0.005499

COUNT1B bits 1 to 8 0.408927
bits 2 to 9 0.737503
bits 3 to 10 0.086679
bits 4 to 11 0.885425
bits 5 to 12 0.415990
bits 6 to 13 0.414412
bits 7 to 14 0.803623
bits 8 to 15 0.080755
bits 9 to 16 0.832648
bits 10 to 17 0.916187
bits 11 to 18 0.417992
bits 12 to 19 0.888201
bits 13 to 20 0.347871
bits 14 to 21 0.744566
bits 15 to 22 0.887958
bits 16 to 23 0.467662
bits 17 to 24 0.748463
bits 18 to 25 0.088331
bits 19 to 26 0.757319

Test p-value

bits 20 to 27 0.502216
bits 21 to 28 0.702212
bits 22 to 29 0.750895
bits 23 to 30 0.445270
bits 24 to 31 0.079477
bits 25 to 32 0.755761

PARKING 1st 0.218799
2nd 0.753306
3rd 0.126820
4th 0.050105
5th 0.323972
6th 0.708135
7th 0.246694
8th 0.276387
9th 0.340551
10th 0.659449

K-S test for 10 p-values 0.774103
MDIST 0.061572
SPHERE 1st 0.22119

2nd 0.23493
3rd 0.42664
4th 0.68078
5th 0.92590
6th 0.63639
7th 0.70631
8th 0.88884
9th 0.39730
10th 0.56672
11th 0.23983
12th 0.99167
13th 0.94178
14th 0.39060
15th 0.84633
16th 0.57522
17th 0.23271
18th 0.40224
19th 0.76420
20th 0.28931

K-S test for 20 p-values 0.628216
SQUEEZE 0.181459
OSUMS 1st 0.483660

2nd 0.782529
3nd 0.561988
4nd 0.310576
5nd 0.273276
6nd 0.194041
7nd 0.111713
8nd 0.095835
9nd 0.622909
10nd 0.215314

K-S test for 10 p-values 0.785766
RUNS UP 1st 0.291501

DOWN 1st 0.658321
UP 2nd 0.819057
DOWN 2nd 0.388523

CRAPS No. of wins 0.516305
Throws/game 0.622109
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Table 37: DIEHARD test results for LCG(523, 0, 263)

Test p-value

BDAY bits 1 to 24 0.510233
bits 2 to 25 0.648150
bits 3 to 25 0.647407
bits 4 to 25 0.603159
bits 5 to 25 0.931308
bits 6 to 25 0.290724
bits 7 to 25 0.039287
bits 8 to 25 0.649477
bits 9 to 25 0.966417

K-S test for 9 p-values 0.537279
OPERM 1st 0.990270

2nd 0.812840
RANK 31 × 31 0.423292
RANK 32 × 32 0.343868
RANK 6 × 8 bits 1 to 8 0.396310

bits 2 to 9 0.466788
bits 3 to 10 0.940135
bits 4 to 11 0.672198
bits 5 to 12 0.250466
bits 6 to 13 0.612980
bits 7 to 14 0.444626
bits 8 to 15 0.410735
bits 9 to 16 0.564317
bits 10 to 17 0.294100
bits 11 to 18 0.450392
bits 12 to 19 0.162234
bits 13 to 20 0.055235
bits 14 to 21 0.467041
bits 15 to 22 0.041343
bits 16 to 23 0.836969
bits 17 to 24 0.659435
bits 18 to 25 0.614567
bits 19 to 26 0.738091
bits 20 to 27 0.346112
bits 21 to 28 0.877526
bits 22 to 29 0.493602
bits 23 to 30 0.304998
bits 24 to 31 0.660920
bits 25 to 32 0.105780

K-S test for 25 p-values 0.417022
BSTREAM 1st 0.81499

2nd 0.15289
3rd 0.10214
4th 0.83252
5th 0.76604
6th 0.30745
7th 0.28722
8th 0.77455
9th 0.58115
10th 0.64197
11th 0.55175
12th 0.05757
13th 0.00977

Test p-value

14th 0.41643
15th 0.03959
16th 0.91550
17th 0.42099
18th 0.04463
19th 0.01368
20th 0.63847

OPSO bits 23 to 32 0.2216
bits 22 to 31 0.4488
bits 21 to 30 0.4844
bits 20 to 29 0.7490
bits 19 to 28 0.0289
bits 18 to 27 0.8556
bits 17 to 26 0.2592
bits 16 to 25 0.7043
bits 15 to 24 0.8444
bits 14 to 23 0.7242
bits 13 to 22 0.7577
bits 12 to 21 0.6409
bits 11 to 20 0.9216
bits 10 to 19 0.8722
bits 9 to 18 0.1431
bits 8 to 17 0.9266
bits 7 to 16 0.0114
bits 6 to 15 0.2961
bits 5 to 14 0.4406
bits 4 to 13 0.5133
bits 3 to 12 0.7019
bits 2 to 11 0.6280
bits 1 to 10 0.2237

OQSO bits 28 to 32 0.7779
bits 27 to 31 0.4523
bits 26 to 30 0.5454
bits 25 to 29 0.0290
bits 24 to 28 0.4177
bits 23 to 27 0.9863
bits 22 to 26 0.0283
bits 21 to 25 0.3355
bits 20 to 24 0.5986
bits 19 to 23 0.0176
bits 18 to 22 0.0323
bits 17 to 21 0.2853
bits 16 to 20 0.8403
bits 15 to 19 0.5615
bits 14 to 18 0.1833
bits 13 to 17 0.7421
bits 12 to 16 0.3442
bits 11 to 15 0.9416
bits 10 to 14 0.9443
bits 9 to 13 0.8451
bits 8 to 12 0.5171
bits 7 to 11 0.1888
bits 6 to 10 0.1155
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Test p-value

bits 5 to 9 0.0709
bits 4 to 8 0.0024
bits 3 to 7 0.9264
bits 2 to 6 0.9021
bits 1 to 5 0.6475

DNA bits 31 to 32 0.1159
bits 30 to 31 0.3025
bits 29 to 30 0.6457
bits 28 to 29 0.6468
bits 27 to 28 0.8888
bits 26 to 27 0.6457
bits 25 to 26 0.4843
bits 24 to 25 0.4773
bits 23 to 24 0.6999
bits 22 to 23 0.5008
bits 21 to 22 0.2984
bits 20 to 21 0.3223
bits 19 to 20 0.6927
bits 18 to 19 0.7191
bits 17 to 18 0.0882
bits 16 to 17 0.9698
bits 15 to 16 0.8609
bits 14 to 15 0.1649
bits 13 to 14 0.8954
bits 12 to 13 0.0965
bits 11 to 12 0.8397
bits 10 to 11 0.9996
bits 9 to 10 0.6566
bits 8 to 9 0.2100
bits 7 to 8 0.4363
bits 6 to 7 0.4914
bits 5 to 6 0.6077
bits 4 to 5 0.9996
bits 3 to 4 0.3066
bits 2 to 3 0.7538
bits 1 to 2 0.8331

COUNT1S 1st 0.491810
2nd 0.147809

COUNT1B bits 1 to 8 0.547158
bits 2 to 9 0.878889
bits 3 to 10 0.050935
bits 4 to 11 0.511621
bits 5 to 12 0.316532
bits 6 to 13 0.492223
bits 7 to 14 0.789981
bits 8 to 15 0.383586
bits 9 to 16 0.607016
bits 10 to 17 0.146271
bits 11 to 18 0.957428
bits 12 to 19 0.654990
bits 13 to 20 0.870018
bits 14 to 21 0.334043
bits 15 to 22 0.620158
bits 16 to 23 0.483766
bits 17 to 24 0.973638
bits 18 to 25 0.192997
bits 19 to 26 0.391369

Test p-value

bits 20 to 27 0.671128
bits 21 to 28 0.942104
bits 22 to 29 0.462529
bits 23 to 30 0.177982
bits 24 to 31 0.362327
bits 25 to 32 0.853652

PARKING 1st 0.794438
2nd 0.015932
3rd 0.033889
4th 0.590298
5th 0.374623
6th 0.392053
7th 0.659449
8th 0.997991
9th 0.969407
10th 0.987371

K-S test for 10 p-values 0.914198
MDIST 0.518994
SPHERE 1st 0.39297

2nd 0.97443
3rd 0.91314
4th 0.24055
5th 0.57765
6th 0.71839
7th 0.86598
8th 0.03872
9th 0.50686
10th 0.57368
11th 0.50174
12th 0.90182
13th 0.50860
14th 0.58902
15th 0.84334
16th 0.48498
17th 0.04574
18th 0.47912
19th 0.98710
20th 0.65813

K-S test for 20 p-values 0.803715
SQUEEZE 0.339558
OSUMS 1st 0.783339

2nd 0.981177
3nd 0.929536
4nd 0.253271
5nd 0.420325
6nd 0.065410
7nd 0.858929
8nd 0.514356
9nd 0.370627
10nd 0.248515

K-S test for 10 p-values 0.187704
RUNS UP 1st 0.297819

DOWN 1st 0.107353
UP 2nd 0.603812
DOWN 2nd 0.683517

CRAPS No. of wins 0.892426
Throws/game 0.892426
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Table 38: DIEHARD test results for LCG(525, 0, 263)

Test p-value

BDAY bits 1 to 24 0.749158
bits 2 to 25 0.289727
bits 3 to 25 0.006385
bits 4 to 25 0.225392
bits 5 to 25 0.673204
bits 6 to 25 0.513489
bits 7 to 25 0.881011
bits 8 to 25 0.949979
bits 9 to 25 0.872984

K-S test for 9 p-values 0.452078
OPERM 1st 0.021604

2nd 0.303615
RANK 31 × 31 0.761668
RANK 32 × 32 0.432260
RANK 6 × 8 bits 1 to 8 0.095827

bits 2 to 9 0.218704
bits 3 to 10 0.108018
bits 4 to 11 0.544305
bits 5 to 12 0.004031
bits 6 to 13 0.831863
bits 7 to 14 0.141851
bits 8 to 15 0.821328
bits 9 to 16 0.534020
bits 10 to 17 0.374278
bits 11 to 18 0.325640
bits 12 to 19 0.993534
bits 13 to 20 0.958890
bits 14 to 21 0.818070
bits 15 to 22 0.984705
bits 16 to 23 0.416342
bits 17 to 24 0.166343
bits 18 to 25 0.320967
bits 19 to 26 0.482612
bits 20 to 27 0.039089
bits 21 to 28 0.106775
bits 22 to 29 0.834839
bits 23 to 30 0.555757
bits 24 to 31 0.035217
bits 25 to 32 0.073664

K-S test for 25 p-values 0.866133
BSTREAM 1st 0.54712

2nd 0.83311
3rd 0.78081
4th 0.77665
5th 0.65152
6th 0.61190
7th 0.00730
8th 0.43382
9th 0.58844
10th 0.17783
11th 0.93723
12th 0.60022
13th 0.78968

Test p-value

14th 0.88405
15th 0.61904
16th 0.94746
17th 0.08536
18th 0.25700
19th 0.16246
20th 0.00416

OPSO bits 23 to 32 0.3241
bits 22 to 31 0.4433
bits 21 to 30 0.1064
bits 20 to 29 0.8166
bits 19 to 28 0.9757
bits 18 to 27 0.6788
bits 17 to 26 0.8229
bits 16 to 25 0.7609
bits 15 to 24 0.6069
bits 14 to 23 0.1162
bits 13 to 22 0.6227
bits 12 to 21 0.7208
bits 11 to 20 0.8533
bits 10 to 19 0.4176
bits 9 to 18 0.9308
bits 8 to 17 0.7043
bits 7 to 16 0.5064
bits 6 to 15 0.3518
bits 5 to 14 0.0335
bits 4 to 13 0.3909
bits 3 to 12 0.8736
bits 2 to 11 0.6601
bits 1 to 10 0.9550

OQSO bits 28 to 32 0.9621
bits 27 to 31 0.1168
bits 26 to 30 0.0664
bits 25 to 29 0.4928
bits 24 to 28 0.5722
bits 23 to 27 0.6796
bits 22 to 26 0.1358
bits 21 to 25 0.5090
bits 20 to 24 0.5735
bits 19 to 23 0.8215
bits 18 to 22 0.7888
bits 17 to 21 0.5252
bits 16 to 20 0.9737
bits 15 to 19 0.7718
bits 14 to 18 0.2683
bits 13 to 17 0.2475
bits 12 to 16 0.9640
bits 11 to 15 0.7697
bits 10 to 14 0.7550
bits 9 to 13 0.3293
bits 8 to 12 0.0482
bits 7 to 11 0.0437
bits 6 to 10 0.4032
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Test p-value

bits 5 to 9 0.7769
bits 4 to 8 0.4177
bits 3 to 7 0.1418
bits 2 to 6 0.9462
bits 1 to 5 0.7058

DNA bits 31 to 32 0.8218
bits 30 to 31 0.8404
bits 29 to 30 0.6324
bits 28 to 29 0.9716
bits 27 to 28 0.0334
bits 26 to 27 0.2793
bits 25 to 26 0.0483
bits 24 to 25 0.6927
bits 23 to 24 0.3769
bits 22 to 23 0.9443
bits 21 to 22 0.5442
bits 20 to 21 0.4902
bits 19 to 20 0.1792
bits 18 to 19 0.6958
bits 17 to 18 0.2569
bits 16 to 17 0.8440
bits 15 to 16 0.8730
bits 14 to 15 0.5477
bits 13 to 14 0.3984
bits 12 to 13 0.5803
bits 11 to 12 0.7720
bits 10 to 11 0.1627
bits 9 to 10 0.4410
bits 8 to 9 0.4086
bits 7 to 8 0.6822
bits 6 to 7 0.6770
bits 5 to 6 0.0548
bits 4 to 5 0.3927
bits 3 to 4 0.4831
bits 2 to 3 0.1032
bits 1 to 2 0.0305

COUNT1S 1st 0.238104
2nd 0.654703

COUNT1B bits 1 to 8 0.332852
bits 2 to 9 0.904618
bits 3 to 10 0.622997
bits 4 to 11 0.873031
bits 5 to 12 0.998515
bits 6 to 13 0.051583
bits 7 to 14 0.385513
bits 8 to 15 0.154935
bits 9 to 16 0.965408
bits 10 to 17 0.100266
bits 11 to 18 0.465014
bits 12 to 19 0.931173
bits 13 to 20 0.871369
bits 14 to 21 0.315702
bits 15 to 22 0.746001
bits 16 to 23 0.373761
bits 17 to 24 0.550210
bits 18 to 25 0.062564
bits 19 to 26 0.320470

Test p-value

bits 20 to 27 0.925802
bits 21 to 28 0.474846
bits 22 to 29 0.175687
bits 23 to 30 0.751236
bits 24 to 31 0.860441
bits 25 to 32 0.970178

PARKING 1st 0.323972
2nd 0.708135
3rd 0.323972
4th 0.958644
5th 0.659449
6th 0.853193
7th 0.899470
8th 0.781201
9th 0.969407
10th 0.977738

K-S test for 10 p-values 0.993381
MDIST 0.407511
SPHERE 1st 0.54685

2nd 0.62404
3rd 0.28389
4th 0.93359
5th 0.35013
6th 0.25624
7th 0.61072
8th 0.00332
9th 0.50748
10th 0.99591
11th 0.67114
12th 0.10592
13th 0.18394
14th 0.74981
15th 0.68083
16th 0.69253
17th 0.29552
18th 0.65892
19th 0.05535
20th 0.58649

K-S test for 20 p-values 0.243988
SQUEEZE 0.896761
OSUMS 1st 0.937360

2nd 0.748848
3nd 0.817578
4nd 0.506994
5nd 0.558444
6nd 0.397806
7nd 0.341894
8nd 0.765528
9nd 0.691076
10nd 0.225903

K-S test for 10 p-values 0.582238
RUNS UP 1st 0.488985

DOWN 1st 0.780775
UP 2nd 0.733830
DOWN 2nd 0.489666

CRAPS No. of wins 0.974980
Throws/game 0.772641
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Table 39: DIEHARD test results for LCG(519, 1, 263)

Test p-value

BDAY bits 1 to 24 0.598890
bits 2 to 25 0.217354
bits 3 to 25 0.812984
bits 4 to 25 0.221838
bits 5 to 25 0.211322
bits 6 to 25 0.273215
bits 7 to 25 0.966747
bits 8 to 25 0.501631
bits 9 to 25 0.214666

K-S test for 9 p-values 0.527559
OPERM 1st 0.185146

2nd 0.397079
RANK 31 × 31 0.422641
RANK 32 × 32 0.757807
RANK 6 × 8 bits 1 to 8 0.526444

bits 2 to 9 0.283043
bits 3 to 10 0.885177
bits 4 to 11 0.470605
bits 5 to 12 0.158696
bits 6 to 13 0.813975
bits 7 to 14 0.223295
bits 8 to 15 0.156549
bits 9 to 16 0.191216
bits 10 to 17 0.882014
bits 11 to 18 0.690904
bits 12 to 19 0.967506
bits 13 to 20 0.947775
bits 14 to 21 0.780829
bits 15 to 22 0.744143
bits 16 to 23 0.024331
bits 17 to 24 0.060709
bits 18 to 25 0.739415
bits 19 to 26 0.163587
bits 20 to 27 0.518397
bits 21 to 28 0.786544
bits 22 to 29 0.615802
bits 23 to 30 0.596588
bits 24 to 31 0.996263
bits 25 to 32 0.308065

K-S test for 25 p-values 0.334937
BSTREAM 1st 0.94517

2nd 0.17541
3rd 0.79503
4th 0.22499
5th 0.74701
6th 0.62526
7th 0.55082
8th 0.25850
9th 0.43382
10th 0.09524
11th 0.39379
12th 0.30335
13th 0.52578

Test p-value

14th 0.61190
15th 0.47268
16th 0.05262
17th 0.71543
18th 0.38126
19th 0.84675
20th 0.92452

OPSO bits 23 to 32 0.9423
bits 22 to 31 0.7055
bits 21 to 30 0.7219
bits 20 to 29 0.8110
bits 19 to 28 0.0269
bits 18 to 27 0.0454
bits 17 to 26 0.5571
bits 16 to 25 0.0298
bits 15 to 24 0.5639
bits 14 to 23 0.4447
bits 13 to 22 0.5353
bits 12 to 21 0.3949
bits 11 to 20 0.0510
bits 10 to 19 0.6763
bits 9 to 18 0.0413
bits 8 to 17 0.7694
bits 7 to 16 0.9266
bits 6 to 15 0.2750
bits 5 to 14 0.2750
bits 4 to 13 0.3582
bits 3 to 12 0.8893
bits 2 to 11 0.4570
bits 1 to 10 0.3404

OQSO bits 28 to 32 0.8369
bits 27 to 31 0.4216
bits 26 to 30 0.3417
bits 25 to 29 0.0270
bits 24 to 28 0.3220
bits 23 to 27 0.1659
bits 22 to 26 0.8079
bits 21 to 25 0.6450
bits 20 to 24 0.8088
bits 19 to 23 0.5986
bits 18 to 22 0.0137
bits 17 to 21 0.7497
bits 16 to 20 0.9045
bits 15 to 19 0.9733
bits 14 to 18 0.1488
bits 13 to 17 0.9922
bits 12 to 16 0.3220
bits 11 to 15 0.1851
bits 10 to 14 0.0963
bits 9 to 13 0.7208
bits 8 to 12 0.3914
bits 7 to 11 0.7208
bits 6 to 10 0.5279
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Test p-value

bits 5 to 9 0.1209
bits 4 to 8 0.0049
bits 3 to 7 0.1511
bits 2 to 6 0.3028
bits 1 to 5 0.7000

DNA bits 31 to 32 0.9933
bits 30 to 31 0.9463
bits 29 to 30 0.0021
bits 28 to 29 0.0421
bits 27 to 28 0.4271
bits 26 to 27 0.4749
bits 25 to 26 0.4456
bits 24 to 25 0.0558
bits 23 to 24 0.8766
bits 22 to 23 0.4808
bits 21 to 22 0.5302
bits 20 to 21 0.3558
bits 19 to 20 0.0149
bits 18 to 19 0.8736
bits 17 to 18 0.3893
bits 16 to 17 0.2627
bits 15 to 16 0.0181
bits 14 to 15 0.5814
bits 13 to 14 0.6566
bits 12 to 13 0.2852
bits 11 to 12 0.1500
bits 10 to 11 0.5998
bits 9 to 10 0.7538
bits 8 to 9 0.0863
bits 7 to 8 0.6413
bits 6 to 7 0.8674
bits 5 to 6 0.8390
bits 4 to 5 0.5699
bits 3 to 4 0.0201
bits 2 to 3 0.9419
bits 1 to 2 0.5442

COUNT1S 1st 0.905273
2nd 0.045513

COUNT1B bits 1 to 8 0.987626
bits 2 to 9 0.027794
bits 3 to 10 0.347403
bits 4 to 11 0.081196
bits 5 to 12 0.209411
bits 6 to 13 0.152336
bits 7 to 14 0.224502
bits 8 to 15 0.602737
bits 9 to 16 0.320630
bits 10 to 17 0.564691
bits 11 to 18 0.967510
bits 12 to 19 0.110182
bits 13 to 20 0.218207
bits 14 to 21 0.605838
bits 15 to 22 0.621087
bits 16 to 23 0.502065
bits 17 to 24 0.692466
bits 18 to 25 0.194252
bits 19 to 26 0.924246

Test p-value

bits 20 to 27 0.360840
bits 21 to 28 0.532679
bits 22 to 29 0.830430
bits 23 to 30 0.308146
bits 24 to 31 0.269508
bits 25 to 32 0.629817

PARKING 1st 0.078457
2nd 0.192812
3rd 0.807188
4th 0.126820
5th 0.117571
6th 0.009936
7th 0.518210
8th 0.873180
9th 0.914635
10th 0.842447

K-S test for 10 p-values 0.746309
MDIST 0.214052
SPHERE 1st 0.54033

2nd 0.90737
3rd 0.01103
4th 0.51826
5th 0.14380
6th 0.60742
7th 0.43446
8th 0.42220
9th 0.10220
10th 0.05250
11th 0.27437
12th 0.80002
13th 0.42436
14th 0.03394
15th 0.20920
16th 0.89106
17th 0.56395
18th 0.82387
19th 0.86696
20th 0.67515

K-S test for 20 p-values 0.218178
SQUEEZE 0.073604
OSUMS 1st 0.757899

2nd 0.717099
3nd 0.263340
4nd 0.403221
5nd 0.149960
6nd 0.965015
7nd 0.971890
8nd 0.398787
9nd 0.516020
10nd 0.889466

K-S test for 10 p-values 0.616520
RUNS UP 1st 0.441220

DOWN 1st 0.910215
UP 2nd 0.715504
DOWN 2nd 0.091807

CRAPS No. of wins 0.274687
Throws/game 0.460578
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Table 40: DIEHARD test results for LCG(523, 1, 263)

Test p-value

BDAY bits 1 to 24 0.990853
bits 2 to 25 0.661486
bits 3 to 25 0.417590
bits 4 to 25 0.453951
bits 5 to 25 0.712944
bits 6 to 25 0.913126
bits 7 to 25 0.700820
bits 8 to 25 0.530341
bits 9 to 25 0.866129

K-S test for 9 p-values 0.933205
OPERM 1st 0.497157

2nd 0.122773
RANK 31 × 31 0.330828
RANK 32 × 32 0.556899
RANK 6 × 8 bits 1 to 8 0.058063

bits 2 to 9 0.663510
bits 3 to 10 0.950939
bits 4 to 11 0.288193
bits 5 to 12 0.078874
bits 6 to 13 0.723909
bits 7 to 14 0.982357
bits 8 to 15 0.137520
bits 9 to 16 0.161401
bits 10 to 17 0.197574
bits 11 to 18 0.967418
bits 12 to 19 0.836184
bits 13 to 20 0.552174
bits 14 to 21 0.590520
bits 15 to 22 0.416323
bits 16 to 23 0.259904
bits 17 to 24 0.910969
bits 18 to 25 0.434705
bits 19 to 26 0.972342
bits 20 to 27 0.376817
bits 21 to 28 0.286520
bits 22 to 29 0.972737
bits 23 to 30 0.148462
bits 24 to 31 0.708309
bits 25 to 32 0.925197

K-S test for 25 p-values 0.789528
BSTREAM 1st 0.10090

2nd 0.25026
3rd 0.75073
4th 0.39649
5th 0.94199
6th 0.22081
7th 0.17844
8th 0.19862
9th 0.05040
10th 0.99501
11th 0.52298
12th 0.55636
13th 0.82600

Test p-value

14th 0.86325
15th 0.81499
16th 0.82899
17th 0.38572
18th 0.91367
19th 0.97927
20th 0.77804

OPSO bits 23 to 32 0.0586
bits 22 to 31 0.0485
bits 21 to 30 0.4122
bits 20 to 29 0.9606
bits 19 to 28 0.1677
bits 18 to 27 0.2085
bits 17 to 26 0.2592
bits 16 to 25 0.3493
bits 15 to 24 0.2536
bits 14 to 23 0.0859
bits 13 to 22 0.1175
bits 12 to 21 0.2558
bits 11 to 20 0.8184
bits 10 to 19 0.9383
bits 9 to 18 0.3442
bits 8 to 17 0.6874
bits 7 to 16 0.7067
bits 6 to 15 0.9978
bits 5 to 14 0.3896
bits 4 to 13 0.7746
bits 3 to 12 0.8386
bits 2 to 11 0.1245
bits 1 to 10 0.2405

OQSO bits 28 to 32 0.7242
bits 27 to 31 0.7000
bits 26 to 30 0.1209
bits 25 to 29 0.1701
bits 24 to 28 0.9462
bits 23 to 27 0.7572
bits 22 to 26 0.9062
bits 21 to 25 0.9525
bits 20 to 24 0.5642
bits 19 to 23 0.2265
bits 18 to 22 0.5090
bits 17 to 21 0.8411
bits 16 to 20 0.5854
bits 15 to 19 0.0514
bits 14 to 18 0.0412
bits 13 to 17 0.9683
bits 12 to 16 0.7174
bits 11 to 15 0.6796
bits 10 to 14 0.1472
bits 9 to 13 0.5212
bits 8 to 12 0.6168
bits 7 to 11 0.7366
bits 6 to 10 0.2225
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Test p-value

bits 5 to 9 0.1719
bits 4 to 8 0.7058
bits 3 to 7 0.2981
bits 2 to 6 0.4097
bits 1 to 5 0.6051

DNA bits 31 to 32 0.9206
bits 30 to 31 0.1761
bits 29 to 30 0.3769
bits 28 to 29 0.3525
bits 27 to 28 0.1521
bits 26 to 27 0.4410
bits 25 to 26 0.6357
bits 24 to 25 0.3384
bits 23 to 24 0.6457
bits 22 to 23 0.9309
bits 21 to 22 0.1335
bits 20 to 21 0.3927
bits 19 to 20 0.8871
bits 18 to 19 0.2292
bits 17 to 18 0.1528
bits 16 to 17 0.4433
bits 15 to 16 0.9630
bits 14 to 15 0.1108
bits 13 to 14 0.5384
bits 12 to 13 0.1148
bits 11 to 12 0.9618
bits 10 to 11 0.9888
bits 9 to 10 0.8536
bits 8 to 9 0.3893
bits 7 to 8 0.3118
bits 6 to 7 0.3171
bits 5 to 6 0.1694
bits 4 to 5 0.6446
bits 3 to 4 0.0268
bits 2 to 3 0.5008
bits 1 to 2 0.4843

COUNT1S 1st 0.679839
2nd 0.680702

COUNT1B bits 1 to 8 0.984081
bits 2 to 9 0.617778
bits 3 to 10 0.296050
bits 4 to 11 0.272029
bits 5 to 12 0.886256
bits 6 to 13 0.740017
bits 7 to 14 0.790192
bits 8 to 15 0.425556
bits 9 to 16 0.436191
bits 10 to 17 0.085636
bits 11 to 18 0.588265
bits 12 to 19 0.992207
bits 13 to 20 0.808170
bits 14 to 21 0.763816
bits 15 to 22 0.106782
bits 16 to 23 0.057482
bits 17 to 24 0.841543
bits 18 to 25 0.647273
bits 19 to 26 0.317607

Test p-value

bits 20 to 27 0.453169
bits 21 to 28 0.073325
bits 22 to 29 0.176200
bits 23 to 30 0.361816
bits 24 to 31 0.440753
bits 25 to 32 0.367757

PARKING 1st 0.374623
2nd 0.246694
3rd 0.078457
4th 0.445521
5th 0.374623
6th 0.232514
7th 0.692266
8th 0.590298
9th 0.126820
10th 0.340551

K-S test for 10 p-values 0.874748
MDIST 0.756212
SPHERE 1st 0.00725

2nd 0.93088
3rd 0.43462
4th 0.50485
5th 0.80240
6th 0.35580
7th 0.14443
8th 0.14023
9th 0.30040
10th 0.59817
11th 0.92163
12th 0.02845
13th 0.30271
14th 0.30549
15th 0.62047
16th 0.94403
17th 0.80386
18th 0.79112
19th 0.42274
20th 0.38949

K-S test for 20 p-values 0.091389
SQUEEZE 0.968048
OSUMS 1st 0.282576

2nd 0.675938
3nd 0.872226
4nd 0.739651
5nd 0.385764
6nd 0.168696
7nd 0.303410
8nd 0.572098
9nd 0.558191
10nd 0.460775

K-S test for 10 p-values 0.271523
RUNS UP 1st 0.084616

DOWN 1st 0.264600
UP 2nd 0.099764
DOWN 2nd 0.078459

CRAPS No. of wins 0.761696
Throws/game 0.564042
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Table 41: DIEHARD test results for LCG(525, 1, 263)

Test p-value

BDAY bits 1 to 24 0.570413
bits 2 to 25 0.031149
bits 3 to 25 0.480883
bits 4 to 25 0.472966
bits 5 to 25 0.044630
bits 6 to 25 0.983694
bits 7 to 25 0.029639
bits 8 to 25 0.347548
bits 9 to 25 0.826033

K-S test for 9 p-values 0.753745
OPERM 1st 0.960472

2nd 0.990484
RANK 31 × 31 0.912279
RANK 32 × 32 0.866558
RANK 6 × 8 bits 1 to 8 0.311968

bits 2 to 9 0.848220
bits 3 to 10 0.818828
bits 4 to 11 0.982629
bits 5 to 12 0.927205
bits 6 to 13 0.664633
bits 7 to 14 0.152632
bits 8 to 15 0.236126
bits 9 to 16 0.862460
bits 10 to 17 0.441143
bits 11 to 18 0.939231
bits 12 to 19 0.851465
bits 13 to 20 0.798104
bits 14 to 21 0.978214
bits 15 to 22 0.559749
bits 16 to 23 0.185878
bits 17 to 24 0.157266
bits 18 to 25 0.473947
bits 19 to 26 0.002875
bits 20 to 27 0.129923
bits 21 to 28 0.003189
bits 22 to 29 0.745328
bits 23 to 30 0.716229
bits 24 to 31 0.207200
bits 25 to 32 0.234449

K-S test for 25 p-values 0.708471
BSTREAM 1st 0.48851

2nd 0.82359
3rd 0.73720
4th 0.79102
5th 0.41187
6th 0.98868
7th 0.70262
8th 0.00252
9th 0.28882
10th 0.48385
11th 0.78356
12th 0.76890
13th 0.02322

Test p-value

14th 0.41825
15th 0.43750
16th 0.25549
17th 0.93752
18th 0.48106
19th 0.94944
20th 0.09643

OPSO bits 23 to 32 0.6639
bits 22 to 31 0.4570
bits 21 to 30 0.5775
bits 20 to 29 0.3557
bits 19 to 28 0.2648
bits 18 to 27 0.4393
bits 17 to 26 0.0250
bits 16 to 25 0.2902
bits 15 to 24 0.8343
bits 14 to 23 0.8840
bits 13 to 22 0.9251
bits 12 to 21 0.4190
bits 11 to 20 0.6701
bits 10 to 19 0.8452
bits 9 to 18 0.8887
bits 8 to 17 0.9506
bits 7 to 16 0.6525
bits 6 to 15 0.1559
bits 5 to 14 0.1245
bits 4 to 13 0.4502
bits 3 to 12 0.2076
bits 2 to 11 0.1347
bits 1 to 10 0.2648

OQSO bits 28 to 32 0.5722
bits 27 to 31 0.0112
bits 26 to 30 0.7421
bits 25 to 29 0.0728
bits 24 to 28 0.4497
bits 23 to 27 0.7748
bits 22 to 26 0.4137
bits 21 to 25 0.3355
bits 20 to 24 0.1511
bits 19 to 23 0.1142
bits 18 to 22 0.4631
bits 17 to 21 0.9955
bits 16 to 20 0.9466
bits 15 to 19 0.2922
bits 14 to 18 0.6674
bits 13 to 17 0.7343
bits 12 to 16 0.7388
bits 11 to 15 0.4163
bits 10 to 14 0.2106
bits 9 to 13 0.3159
bits 8 to 12 0.5252
bits 7 to 11 0.1906
bits 6 to 10 0.5077
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Test p-value

bits 5 to 9 0.4833
bits 4 to 8 0.2887
bits 3 to 7 0.0554
bits 2 to 6 0.6259
bits 1 to 5 0.1202

DNA bits 31 to 32 0.8316
bits 30 to 31 0.8883
bits 29 to 30 0.2355
bits 28 to 29 0.4503
bits 27 to 28 0.3961
bits 26 to 27 0.8642
bits 25 to 26 0.5536
bits 24 to 25 0.7309
bits 23 to 24 0.3514
bits 22 to 23 0.1001
bits 21 to 22 0.7453
bits 20 to 21 0.6641
bits 19 to 20 0.4224
bits 18 to 19 0.0753
bits 17 to 18 0.5384
bits 16 to 17 0.8616
bits 15 to 16 0.9106
bits 14 to 15 0.9698
bits 13 to 14 0.2008
bits 12 to 13 0.3836
bits 11 to 12 0.6134
bits 10 to 11 0.4855
bits 9 to 10 0.7928
bits 8 to 9 0.6706
bits 7 to 8 0.9052
bits 6 to 7 0.2903
bits 5 to 6 0.5255
bits 4 to 5 0.0665
bits 3 to 4 0.1649
bits 2 to 3 0.2714
bits 1 to 2 0.0086

COUNT1S 1st 0.105943
2nd 0.921093

COUNT1B bits 1 to 8 0.635437
bits 2 to 9 0.595580
bits 3 to 10 0.103928
bits 4 to 11 0.259409
bits 5 to 12 0.399723
bits 6 to 13 0.599593
bits 7 to 14 0.529607
bits 8 to 15 0.514767
bits 9 to 16 0.462789
bits 10 to 17 0.400949
bits 11 to 18 0.373807
bits 12 to 19 0.213108
bits 13 to 20 0.853634
bits 14 to 21 0.569019
bits 15 to 22 0.068772
bits 16 to 23 0.203534
bits 17 to 24 0.263829
bits 18 to 25 0.445256
bits 19 to 26 0.212759

Test p-value

bits 20 to 27 0.039475
bits 21 to 28 0.967496
bits 22 to 29 0.742038
bits 23 to 30 0.852440
bits 24 to 31 0.664025
bits 25 to 32 0.640546

PARKING 1st 0.853193
2nd 0.659449
3rd 0.481790
4th 0.659449
5th 0.767486
6th 0.723613
7th 0.357445
8th 0.100530
9th 0.374623
10th 0.625377

K-S test for 10 p-values 0.509465
MDIST 0.906752
SPHERE 1st 0.32600

2nd 0.82439
3rd 0.03554
4th 0.67480
5th 0.64824
6th 0.77630
7th 0.68713
8th 0.21617
9th 0.13792
10th 0.41616
11th 0.03112
12th 0.65695
13th 0.79027
14th 0.33711
15th 0.68957
16th 0.14503
17th 0.98231
18th 0.25226
19th 0.20049
20th 0.68244

K-S test for 20 p-values 0.247693
SQUEEZE 0.170055
OSUMS 1st 0.224604

2nd 0.295827
3nd 0.319191
4nd 0.304288
5nd 0.086728
6nd 0.843053
7nd 0.226564
8nd 0.989154
9nd 0.753418
10nd 0.962030

K-S test for 10 p-values 0.557772
RUNS UP 1st 0.493002

DOWN 1st 0.729682
UP 2nd 0.574884
DOWN 2nd 0.289951

CRAPS No. of wins 0.297499
Throws/game 0.974715
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Table 42: DIEHARD test results for LCG(3512401965023503517, 0, 263)

Test p-value

BDAY bits 1 to 24 0.918175
bits 2 to 25 0.224224
bits 3 to 25 0.814329
bits 4 to 25 0.901392
bits 5 to 25 0.899613
bits 6 to 25 0.600892
bits 7 to 25 0.136830
bits 8 to 25 0.144277
bits 9 to 25 0.796218

K-S test for 9 p-values 0.772179
OPERM 1st 0.764217

2nd 0.357683
RANK 31 × 31 0.819316
RANK 32 × 32 0.358317
RANK 6 × 8 bits 1 to 8 0.564364

bits 2 to 9 0.624702
bits 3 to 10 0.307819
bits 4 to 11 0.216510
bits 5 to 12 0.663265
bits 6 to 13 0.451514
bits 7 to 14 0.355193
bits 8 to 15 0.090266
bits 9 to 16 0.036820
bits 10 to 17 0.041455
bits 11 to 18 0.637093
bits 12 to 19 0.025349
bits 13 to 20 0.795626
bits 14 to 21 0.121542
bits 15 to 22 0.964259
bits 16 to 23 0.867717
bits 17 to 24 0.725171
bits 18 to 25 0.212474
bits 19 to 26 0.776837
bits 20 to 27 0.330964
bits 21 to 28 0.361082
bits 22 to 29 0.903910
bits 23 to 30 0.394025
bits 24 to 31 0.031184
bits 25 to 32 0.269741

K-S test for 25 p-values 0.648795
BSTREAM 1st 0.53042

2nd 0.79170
3rd 0.54990
4th 0.95987
5th 0.96485
6th 0.41916
7th 0.10090
8th 0.17420
9th 0.89925
10th 0.23277
11th 0.42740
12th 0.44765
13th 0.04019

Test p-value

14th 0.46247
15th 0.57200
16th 0.02605
17th 0.96557
18th 0.10508
19th 0.22851
20th 0.44026

OPSO bits 23 to 32 0.7322
bits 22 to 31 0.9606
bits 21 to 30 0.1660
bits 20 to 29 0.1002
bits 19 to 28 0.8360
bits 18 to 27 0.3777
bits 17 to 26 0.6525
bits 16 to 25 0.2115
bits 15 to 24 0.3179
bits 14 to 23 0.7242
bits 13 to 22 0.4817
bits 12 to 21 0.7288
bits 11 to 20 0.7777
bits 10 to 19 0.1884
bits 9 to 18 0.6122
bits 8 to 17 0.4393
bits 7 to 16 0.9679
bits 6 to 15 0.6109
bits 5 to 14 0.3621
bits 4 to 13 0.6886
bits 3 to 12 0.6109
bits 2 to 11 0.0186
bits 1 to 10 0.4611

OQSO bits 28 to 32 0.8361
bits 27 to 31 0.2067
bits 26 to 30 0.3849
bits 25 to 29 0.9857
bits 24 to 28 0.4820
bits 23 to 27 0.9718
bits 22 to 26 0.1329
bits 21 to 25 0.2773
bits 20 to 24 0.3580
bits 19 to 23 0.5158
bits 18 to 22 0.2705
bits 17 to 21 0.8821
bits 16 to 20 0.6929
bits 15 to 19 0.3492
bits 14 to 18 0.9133
bits 13 to 17 0.4564
bits 12 to 16 0.5185
bits 11 to 15 0.2307
bits 10 to 14 0.8106
bits 9 to 13 0.0609
bits 8 to 12 0.5934
bits 7 to 11 0.7288
bits 6 to 10 0.0896
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Test p-value

bits 5 to 9 0.2135
bits 4 to 8 0.0290
bits 3 to 7 0.5508
bits 2 to 6 0.7603
bits 1 to 5 0.6361

DNA bits 31 to 32 0.8655
bits 30 to 31 0.7009
bits 29 to 30 0.7211
bits 28 to 29 0.3287
bits 27 to 28 0.2050
bits 26 to 27 0.3213
bits 25 to 26 0.5710
bits 24 to 25 0.8661
bits 23 to 24 0.5290
bits 22 to 23 0.8003
bits 21 to 22 0.8346
bits 20 to 21 0.5998
bits 19 to 20 0.2569
bits 18 to 19 0.1303
bits 17 to 18 0.3904
bits 16 to 17 0.5055
bits 15 to 16 0.9290
bits 14 to 15 0.7009
bits 13 to 14 0.7919
bits 12 to 13 0.5617
bits 11 to 12 0.3395
bits 10 to 11 0.2126
bits 9 to 10 0.0146
bits 8 to 9 0.4167
bits 7 to 8 0.2126
bits 6 to 7 0.2401
bits 5 to 6 0.0757
bits 4 to 5 0.5008
bits 3 to 4 0.0765
bits 2 to 3 0.7500
bits 1 to 2 0.8256

COUNT1S 1st 0.722610
2nd 0.354334

COUNT1B bits 1 to 8 0.691069
bits 2 to 9 0.027032
bits 3 to 10 0.630820
bits 4 to 11 0.206829
bits 5 to 12 0.971943
bits 6 to 13 0.839165
bits 7 to 14 0.892951
bits 8 to 15 0.974180
bits 9 to 16 0.373406
bits 10 to 17 0.992262
bits 11 to 18 0.439712
bits 12 to 19 0.650300
bits 13 to 20 0.796946
bits 14 to 21 0.604809
bits 15 to 22 0.183616
bits 16 to 23 0.201743
bits 17 to 24 0.582343
bits 18 to 25 0.720871
bits 19 to 26 0.789796

Test p-value

bits 20 to 27 0.089912
bits 21 to 28 0.363575
bits 22 to 29 0.065150
bits 23 to 30 0.125726
bits 24 to 31 0.356028
bits 25 to 32 0.639261

PARKING 1st 0.781201
2nd 0.554479
3rd 0.261324
4th 0.136563
5th 0.323972
6th 0.085365
7th 0.781201
8th 0.445521
9th 0.168804
10th 0.340551

K-S test for 10 p-values 0.651458
MDIST 0.238350
SPHERE 1st 0.73870

2nd 0.74901
3rd 0.33461
4th 0.77565
5th 0.66809
6th 0.45308
7th 0.58390
8th 0.09677
9th 0.28968
10th 0.60912
11th 0.05553
12th 0.13490
13th 0.18493
14th 0.69821
15th 0.05054
16th 0.38510
17th 0.37116
18th 0.19396
19th 0.73248
20th 0.34286

K-S test for 20 p-values 0.708280
SQUEEZE 0.282916
OSUMS 1st 0.812200

2nd 0.485152
3nd 0.654435
4nd 0.249923
5nd 0.728370
6nd 0.472731
7nd 0.179069
8nd 0.556552
9nd 0.602433
10nd 0.332094

K-S test for 10 p-values 0.429908
RUNS UP 1st 0.199066

DOWN 1st 0.484925
UP 2nd 0.398951
DOWN 2nd 0.741266

CRAPS No. of wins 0.121663
Throws/game 0.871119
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Table 43: DIEHARD test results for LCG(2444805353187672469, 0, 263)

Test p-value

BDAY bits 1 to 24 0.193545
bits 2 to 25 0.532924
bits 3 to 25 0.268666
bits 4 to 25 0.644471
bits 5 to 25 0.397855
bits 6 to 25 0.899574
bits 7 to 25 0.386786
bits 8 to 25 0.576710
bits 9 to 25 0.318485

K-S test for 9 p-values 0.415225
OPERM 1st 0.353411

2nd 0.443585
RANK 31 × 31 0.325080
RANK 32 × 32 0.556414
RANK 6 × 8 bits 1 to 8 0.041842

bits 2 to 9 0.171740
bits 3 to 10 0.089051
bits 4 to 11 0.773874
bits 5 to 12 0.103779
bits 6 to 13 0.109914
bits 7 to 14 0.208084
bits 8 to 15 0.968900
bits 9 to 16 0.925074
bits 10 to 17 0.926686
bits 11 to 18 0.915222
bits 12 to 19 0.225424
bits 13 to 20 0.212238
bits 14 to 21 0.291307
bits 15 to 22 0.790935
bits 16 to 23 0.290217
bits 17 to 24 0.511052
bits 18 to 25 0.867991
bits 19 to 26 0.278514
bits 20 to 27 0.313323
bits 21 to 28 0.351587
bits 22 to 29 0.718712
bits 23 to 30 0.094206
bits 24 to 31 0.025524
bits 25 to 32 0.681659

K-S test for 25 p-values 0.822926
BSTREAM 1st 0.22781

2nd 0.52857
3rd 0.86274
4th 0.33847
5th 0.99243
6th 0.77032
7th 0.42923
8th 0.94746
9th 0.59751
10th 0.38662
11th 0.12743
12th 0.16419
13th 0.62437

Test p-value

14th 0.51367
15th 0.95589
16th 0.20321
17th 0.79102
18th 0.72798
19th 0.34964
20th 0.35921

OPSO bits 23 to 32 0.9105
bits 22 to 31 0.0864
bits 21 to 30 0.2470
bits 20 to 29 0.2503
bits 19 to 28 0.7694
bits 18 to 27 0.5734
bits 17 to 26 0.7031
bits 16 to 25 0.8715
bits 15 to 24 0.0356
bits 14 to 23 0.5489
bits 13 to 22 0.8427
bits 12 to 21 0.4461
bits 11 to 20 0.8525
bits 10 to 19 0.8220
bits 9 to 18 0.8913
bits 8 to 17 0.6056
bits 7 to 16 0.7446
bits 6 to 15 0.0389
bits 5 to 14 0.1122
bits 4 to 13 0.7161
bits 3 to 12 0.7947
bits 2 to 11 0.2448
bits 1 to 10 0.9979

OQSO bits 28 to 32 0.4982
bits 27 to 31 0.6637
bits 26 to 30 0.5212
bits 25 to 29 0.3927
bits 24 to 28 0.5775
bits 23 to 27 0.7453
bits 22 to 26 0.1693
bits 21 to 25 0.0992
bits 20 to 24 0.1617
bits 19 to 23 0.4698
bits 18 to 22 0.6348
bits 17 to 21 0.4032
bits 16 to 20 0.2561
bits 15 to 19 0.7254
bits 14 to 18 0.8821
bits 13 to 17 0.5454
bits 12 to 16 0.8361
bits 11 to 15 0.7666
bits 10 to 14 0.7728
bits 9 to 13 0.9615
bits 8 to 12 0.4403
bits 7 to 11 0.6772
bits 6 to 10 0.0514
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Test p-value

bits 5 to 9 0.0536
bits 4 to 8 0.9525
bits 3 to 7 0.0421
bits 2 to 6 0.9288
bits 1 to 5 0.4631

DNA bits 31 to 32 0.7519
bits 30 to 31 0.4352
bits 29 to 30 0.1480
bits 28 to 29 0.2852
bits 27 to 28 0.7171
bits 26 to 27 0.2724
bits 25 to 26 0.5196
bits 24 to 25 0.9613
bits 23 to 24 0.7970
bits 22 to 23 0.6280
bits 21 to 22 0.2410
bits 20 to 21 0.3384
bits 19 to 20 0.3319
bits 18 to 19 0.2733
bits 17 to 18 0.6391
bits 16 to 17 0.8927
bits 15 to 16 0.4655
bits 14 to 15 0.0911
bits 13 to 14 0.2646
bits 12 to 13 0.7280
bits 11 to 12 0.6652
bits 10 to 11 0.8382
bits 9 to 10 0.5524
bits 8 to 9 0.4996
bits 7 to 8 0.0624
bits 6 to 7 0.6968
bits 5 to 6 0.0468
bits 4 to 5 0.5008
bits 3 to 4 0.0004
bits 2 to 3 0.8866
bits 1 to 2 0.8954

COUNT1S 1st 0.207042
2nd 0.961829

COUNT1B bits 1 to 8 0.224769
bits 2 to 9 0.731407
bits 3 to 10 0.507596
bits 4 to 11 0.084269
bits 5 to 12 0.263026
bits 6 to 13 0.174003
bits 7 to 14 0.938141
bits 8 to 15 0.379658
bits 9 to 16 0.783477
bits 10 to 17 0.728043
bits 11 to 18 0.754630
bits 12 to 19 0.534358
bits 13 to 20 0.605773
bits 14 to 21 0.765819
bits 15 to 22 0.885956
bits 16 to 23 0.671126
bits 17 to 24 0.702257
bits 18 to 25 0.641689
bits 19 to 26 0.602335

Test p-value

bits 20 to 27 0.819698
bits 21 to 28 0.584896
bits 22 to 29 0.642023
bits 23 to 30 0.733239
bits 24 to 31 0.033304
bits 25 to 32 0.464097

PARKING 1st 0.009936
2nd 0.276387
3rd 0.463618
4th 0.055002
5th 0.781201
6th 0.518210
7th 0.853193
8th 0.590298
9th 0.853193
10th 0.831196

K-S test for 10 p-values 0.343457
MDIST 0.897445
SPHERE 1st 0.34716

2nd 0.48100
3rd 0.43662
4th 0.30058
5th 0.35877
6th 0.54640
7th 0.99834
8th 0.83490
9th 0.50928
10th 0.84301
11th 0.13023
12th 0.06790
13th 0.16116
14th 0.00479
15th 0.08544
16th 0.57751
17th 0.22946
18th 0.95542
19th 0.08717
20th 0.09574

K-S test for 20 p-values 0.863873
SQUEEZE 0.881511
OSUMS 1st 0.706169

2nd 0.233125
3nd 0.431244
4nd 0.629350
5nd 0.771801
6nd 0.754542
7nd 0.893973
8nd 0.211153
9nd 0.468310
10nd 0.946623

K-S test for 10 p-values 0.550182
RUNS UP 1st 0.772599

DOWN 1st 0.682501
UP 2nd 0.801633
DOWN 2nd 0.287603

CRAPS No. of wins 0.902801
Throws/game 0.731621
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Table 44: DIEHARD test results for LCG(1987591058829310733, 0, 263)

Test p-value

BDAY bits 1 to 24 0.740385
bits 2 to 25 0.972517
bits 3 to 25 0.894966
bits 4 to 25 0.401502
bits 5 to 25 0.471229
bits 6 to 25 0.585151
bits 7 to 25 0.566122
bits 8 to 25 0.589979
bits 9 to 25 0.874326

K-S test for 9 p-values 0.904624
OPERM 1st 0.638675

2nd 0.809690
RANK 31 × 31 0.383637
RANK 32 × 32 0.983716
RANK 6 × 8 bits 1 to 8 0.760367

bits 2 to 9 0.224131
bits 3 to 10 0.288892
bits 4 to 11 0.187880
bits 5 to 12 0.546135
bits 6 to 13 0.764841
bits 7 to 14 0.958769
bits 8 to 15 0.665375
bits 9 to 16 0.078016
bits 10 to 17 0.044300
bits 11 to 18 0.337731
bits 12 to 19 0.778755
bits 13 to 20 0.780117
bits 14 to 21 0.340914
bits 15 to 22 0.439145
bits 16 to 23 0.962073
bits 17 to 24 0.961016
bits 18 to 25 0.246127
bits 19 to 26 0.971007
bits 20 to 27 0.676890
bits 21 to 28 0.604962
bits 22 to 29 0.506288
bits 23 to 30 0.339887
bits 24 to 31 0.021473
bits 25 to 32 0.740360

K-S test for 25 p-values 0.236210
BSTREAM 1st 0.75443

2nd 0.85542
3rd 0.11339
4th 0.66097
5th 0.31322
6th 0.78629
7th 0.88587
8th 0.18027
9th 0.26535
10th 0.85436
11th 0.03344
12th 0.87802
13th 0.09804

Test p-value

14th 0.12841
15th 0.61280
16th 0.87563
17th 0.95718
18th 0.29685
19th 0.01227
20th 0.77804

OPSO bits 23 to 32 0.4666
bits 22 to 31 0.2961
bits 21 to 30 0.5585
bits 20 to 29 0.5339
bits 19 to 28 0.1893
bits 18 to 27 0.9868
bits 17 to 26 0.8656
bits 16 to 25 0.4082
bits 15 to 24 0.0937
bits 14 to 23 0.2331
bits 13 to 22 0.1686
bits 12 to 21 0.1969
bits 11 to 20 0.4927
bits 10 to 19 0.0049
bits 9 to 18 0.6422
bits 8 to 17 0.9502
bits 7 to 16 0.9303
bits 6 to 15 0.2056
bits 5 to 14 0.1083
bits 4 to 13 0.9105
bits 3 to 12 0.6813
bits 2 to 11 0.1302
bits 1 to 10 0.0698

OQSO bits 28 to 32 0.7140
bits 27 to 31 0.5050
bits 26 to 30 0.6297
bits 25 to 29 0.8079
bits 24 to 28 0.2400
bits 23 to 27 0.3707
bits 22 to 26 0.6233
bits 21 to 25 0.5454
bits 20 to 24 0.2019
bits 19 to 23 0.1650
bits 18 to 22 0.6051
bits 17 to 21 0.5468
bits 16 to 20 0.5748
bits 15 to 19 0.6462
bits 14 to 18 0.7829
bits 13 to 17 0.1433
bits 12 to 16 0.9067
bits 11 to 15 0.4389
bits 10 to 14 0.2761
bits 9 to 13 0.8893
bits 8 to 12 0.7878
bits 7 to 11 0.6538
bits 6 to 10 0.6575
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Test p-value

bits 5 to 9 0.8060
bits 4 to 8 0.3184
bits 3 to 7 0.9795
bits 2 to 6 0.2539
bits 1 to 5 0.0577

DNA bits 31 to 32 0.8124
bits 30 to 31 0.4375
bits 29 to 30 0.6916
bits 28 to 29 0.0684
bits 27 to 28 0.6706
bits 26 to 27 0.8068
bits 25 to 26 0.2783
bits 24 to 25 0.2221
bits 23 to 24 0.3046
bits 22 to 23 0.2447
bits 21 to 22 0.4573
bits 20 to 21 0.2230
bits 19 to 20 0.0770
bits 18 to 19 0.0650
bits 17 to 18 0.6280
bits 16 to 17 0.0930
bits 15 to 16 0.3223
bits 14 to 15 0.1800
bits 13 to 14 0.2283
bits 12 to 13 0.1862
bits 11 to 12 0.2117
bits 10 to 11 0.1297
bits 9 to 10 0.0532
bits 8 to 9 0.2392
bits 7 to 8 0.9184
bits 6 to 7 0.3223
bits 5 to 6 0.8888
bits 4 to 5 0.8432
bits 3 to 4 0.2636
bits 2 to 3 0.7746
bits 1 to 2 0.1870

COUNT1S 1st 0.455242
2nd 0.153778

COUNT1B bits 1 to 8 0.964345
bits 2 to 9 0.826983
bits 3 to 10 0.140691
bits 4 to 11 0.648583
bits 5 to 12 0.671401
bits 6 to 13 0.483024
bits 7 to 14 0.580038
bits 8 to 15 0.203769
bits 9 to 16 0.154869
bits 10 to 17 0.669677
bits 11 to 18 0.445223
bits 12 to 19 0.142196
bits 13 to 20 0.893441
bits 14 to 21 0.845237
bits 15 to 22 0.837701
bits 16 to 23 0.722837
bits 17 to 24 0.970731
bits 18 to 25 0.746586
bits 19 to 26 0.749700

Test p-value

bits 20 to 27 0.633061
bits 21 to 28 0.998769
bits 22 to 29 0.382028
bits 23 to 30 0.480145
bits 24 to 31 0.209215
bits 25 to 32 0.759778

PARKING 1st 0.006836
2nd 0.481790
3rd 0.831196
4th 0.590298
5th 0.572463
6th 0.071982
7th 0.819442
8th 0.027568
9th 0.340551
10th 0.092718

K-S test for 10 p-values 0.849052
MDIST 0.701685
SPHERE 1st 0.26858

2nd 0.18854
3rd 0.38634
4th 0.99945
5th 0.79293
6th 0.95899
7th 0.05618
8th 0.91957
9th 0.89502
10th 0.94405
11th 0.79461
12th 0.25310
13th 0.72640
14th 0.31612
15th 0.21110
16th 0.84962
17th 0.87688
18th 0.27824
19th 0.56252
20th 0.92306

K-S test for 20 p-values 0.954129
SQUEEZE 0.519053
OSUMS 1st 0.601707

2nd 0.632279
3nd 0.153232
4nd 0.688688
5nd 0.096181
6nd 0.787407
7nd 0.001462
8nd 0.149491
9nd 0.789830
10nd 0.217253

K-S test for 10 p-values 0.731558
RUNS UP 1st 0.297063

DOWN 1st 0.776076
UP 2nd 0.349017
DOWN 2nd 0.026262

CRAPS No. of wins 0.153014
Throws/game 0.224485
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Table 45: DIEHARD test results for LCG(9219741426499971445, 1, 263)

Test p-value

BDAY bits 1 to 24 0.720403
bits 2 to 25 0.821367
bits 3 to 25 0.663259
bits 4 to 25 0.885925
bits 5 to 25 0.088926
bits 6 to 25 0.176140
bits 7 to 25 0.486107
bits 8 to 25 0.595153
bits 9 to 25 0.373985

K-S test for 9 p-values 0.040916
OPERM 1st 0.985712

2nd 0.273085
RANK 31 × 31 0.680562
RANK 32 × 32 0.327686
RANK 6 × 8 bits 1 to 8 0.359260

bits 2 to 9 0.680324
bits 3 to 10 0.089763
bits 4 to 11 0.798436
bits 5 to 12 0.363833
bits 6 to 13 0.896677
bits 7 to 14 0.639693
bits 8 to 15 0.466500
bits 9 to 16 0.396577
bits 10 to 17 0.345761
bits 11 to 18 0.312819
bits 12 to 19 0.630386
bits 13 to 20 0.415567
bits 14 to 21 0.519402
bits 15 to 22 0.578161
bits 16 to 23 0.570128
bits 17 to 24 0.411871
bits 18 to 25 0.187655
bits 19 to 26 0.829884
bits 20 to 27 0.329908
bits 21 to 28 0.000049
bits 22 to 29 0.665247
bits 23 to 30 0.248845
bits 24 to 31 0.998480
bits 25 to 32 0.966068

K-S test for 25 p-values 0.514648
BSTREAM 1st 0.21874

2nd 0.31322
3rd 0.11249
4th 0.84002
5th 0.70343
6th 0.78900
7th 0.35572
8th 0.22081
9th 0.09058
10th 0.17905
11th 0.50156
12th 0.06345
13th 0.39649

Test p-value

14th 0.61369
15th 0.50529
16th 0.00331
17th 0.06432
18th 0.74024
19th 0.15289
20th 0.30417

OPSO bits 23 to 32 0.9725
bits 22 to 31 0.1377
bits 21 to 30 0.7888
bits 20 to 29 0.5051
bits 19 to 28 0.6651
bits 18 to 27 0.7067
bits 17 to 26 0.7102
bits 16 to 25 0.4406
bits 15 to 24 0.0246
bits 14 to 23 0.1792
bits 13 to 22 0.2514
bits 12 to 21 0.6983
bits 11 to 20 0.6837
bits 10 to 19 0.5188
bits 9 to 18 0.6664
bits 8 to 17 0.9154
bits 7 to 16 0.9550
bits 6 to 15 0.5243
bits 5 to 14 0.2066
bits 4 to 13 0.7219
bits 3 to 12 0.1332
bits 2 to 11 0.0212
bits 1 to 10 0.8247

OQSO bits 28 to 32 0.7321
bits 27 to 31 0.5535
bits 26 to 30 0.1789
bits 25 to 29 0.5629
bits 24 to 28 0.7937
bits 23 to 27 0.9849
bits 22 to 26 0.8515
bits 21 to 25 0.1250
bits 20 to 24 0.6386
bits 19 to 23 0.4901
bits 18 to 22 0.5575
bits 17 to 21 0.2155
bits 16 to 20 0.6271
bits 15 to 19 0.1216
bits 14 to 18 0.4230
bits 13 to 17 0.6259
bits 12 to 16 0.2899
bits 11 to 15 0.5171
bits 10 to 14 0.0274
bits 9 to 13 0.5414
bits 8 to 12 0.1543
bits 7 to 11 0.2215
bits 6 to 10 0.4860
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Test p-value

bits 5 to 9 0.1307
bits 4 to 8 0.2165
bits 3 to 7 0.1182
bits 2 to 6 0.5854
bits 1 to 5 0.8814

DNA bits 31 to 32 0.3972
bits 30 to 31 0.2579
bits 29 to 30 0.8093
bits 28 to 29 0.4305
bits 27 to 28 0.4224
bits 26 to 27 0.5020
bits 25 to 26 0.6213
bits 24 to 25 0.3938
bits 23 to 24 0.4831
bits 22 to 23 0.6706
bits 21 to 22 0.8742
bits 20 to 21 0.2186
bits 19 to 20 0.6302
bits 18 to 19 0.0232
bits 17 to 18 0.7970
bits 16 to 17 0.5814
bits 15 to 16 0.5837
bits 14 to 15 0.9236
bits 13 to 14 0.2100
bits 12 to 13 0.7702
bits 11 to 12 0.6134
bits 10 to 11 0.6577
bits 9 to 10 0.4796
bits 8 to 9 0.6716
bits 7 to 8 0.8346
bits 6 to 7 0.3848
bits 5 to 6 0.2319
bits 4 to 5 0.9115
bits 3 to 4 0.8563
bits 2 to 3 0.3724
bits 1 to 2 0.2337

COUNT1S 1st 0.295804
2nd 0.594562

COUNT1B bits 1 to 8 0.711647
bits 2 to 9 0.009409
bits 3 to 10 0.601208
bits 4 to 11 0.673514
bits 5 to 12 0.563164
bits 6 to 13 0.276289
bits 7 to 14 0.915314
bits 8 to 15 0.764624
bits 9 to 16 0.910444
bits 10 to 17 0.920692
bits 11 to 18 0.622088
bits 12 to 19 0.074680
bits 13 to 20 0.234398
bits 14 to 21 0.064607
bits 15 to 22 0.412969
bits 16 to 23 0.226956
bits 17 to 24 0.289046
bits 18 to 25 0.699915
bits 19 to 26 0.699339

Test p-value

bits 20 to 27 0.818506
bits 21 to 28 0.849217
bits 22 to 29 0.265446
bits 23 to 30 0.293536
bits 24 to 31 0.892887
bits 25 to 32 0.971628

PARKING 1st 0.409702
2nd 0.205562
3rd 0.625377
4th 0.842447
5th 0.738676
6th 0.819442
7th 0.767486
8th 0.146807
9th 0.192812
10th 0.261324

K-S test for 10 p-values 0.177261
MDIST 0.479727
SPHERE 1st 0.69914

2nd 0.14687
3rd 0.77199
4th 0.44222
5th 0.46998
6th 0.64175
7th 0.23570
8th 0.47784
9th 0.27807
10th 0.03189
11th 0.33734
12th 0.29425
13th 0.92031
14th 0.29867
15th 0.71952
16th 0.26455
17th 0.36959
18th 0.64885
19th 0.78094
20th 0.05433

K-S test for 20 p-values 0.484610
SQUEEZE 0.084253
OSUMS 1st 0.473127

2nd 0.285556
3nd 0.719631
4nd 0.284637
5nd 0.489931
6nd 0.087302
7nd 0.003964
8nd 0.429749
9nd 0.953740
10nd 0.410872

K-S test for 10 p-values 0.570837
RUNS UP 1st 0.067298

DOWN 1st 0.224690
UP 2nd 0.440729
DOWN 2nd 0.013198

CRAPS No. of wins 0.788498
Throws/game 0.090510
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Table 46: DIEHARD test results for LCG(2806196910506780709, 1, 263)

Test p-value

BDAY bits 1 to 24 0.210576
bits 2 to 25 0.567063
bits 3 to 25 0.395163
bits 4 to 25 0.150031
bits 5 to 25 0.412217
bits 6 to 25 0.515134
bits 7 to 25 0.398347
bits 8 to 25 0.021044
bits 9 to 25 0.489100

K-S test for 9 p-values 0.874991
OPERM 1st 0.313056

2nd 0.161744
RANK 31 × 31 0.326191
RANK 32 × 32 0.376873
RANK 6 × 8 bits 1 to 8 0.156941

bits 2 to 9 0.780946
bits 3 to 10 0.851335
bits 4 to 11 0.572384
bits 5 to 12 0.277055
bits 6 to 13 0.398422
bits 7 to 14 0.438787
bits 8 to 15 0.031188
bits 9 to 16 0.578488
bits 10 to 17 0.448589
bits 11 to 18 0.201326
bits 12 to 19 0.000162
bits 13 to 20 0.429916
bits 14 to 21 0.834461
bits 15 to 22 0.003385
bits 16 to 23 0.026825
bits 17 to 24 0.607648
bits 18 to 25 0.898203
bits 19 to 26 0.447794
bits 20 to 27 0.460637
bits 21 to 28 0.651161
bits 22 to 29 0.776687
bits 23 to 30 0.126257
bits 24 to 31 0.416978
bits 25 to 32 0.581032

K-S test for 25 p-values 0.820042
BSTREAM 1st 0.54064

2nd 0.66948
3rd 0.13438
4th 0.32238
5th 0.65583
6th 0.91256
7th 0.65840
8th 0.26842
9th 0.56282
10th 0.15510
11th 0.06641
12th 0.82480
13th 0.45876

Test p-value

14th 0.17420
15th 0.21599
16th 0.15179
17th 0.19090
18th 0.29363
19th 0.39199
20th 0.28010

OPSO bits 23 to 32 0.9077
bits 22 to 31 0.4693
bits 21 to 30 0.3216
bits 20 to 29 0.0827
bits 19 to 28 0.6461
bits 18 to 27 0.2648
bits 17 to 26 0.0645
bits 16 to 25 0.1109
bits 15 to 24 0.1362
bits 14 to 23 0.7683
bits 13 to 22 0.1014
bits 12 to 21 0.1651
bits 11 to 20 0.0562
bits 10 to 19 0.3416
bits 9 to 18 0.1231
bits 8 to 17 0.4109
bits 7 to 16 0.4447
bits 6 to 15 0.9370
bits 5 to 14 0.7797
bits 4 to 13 0.8343
bits 3 to 12 0.2373
bits 2 to 11 0.1686
bits 1 to 10 0.1584

OQSO bits 28 to 32 0.7635
bits 27 to 31 0.3875
bits 26 to 30 0.9967
bits 25 to 29 0.5360
bits 24 to 28 0.0643
bits 23 to 27 0.6513
bits 22 to 26 0.3784
bits 21 to 25 0.2594
bits 20 to 24 0.4309
bits 19 to 23 0.5117
bits 18 to 22 0.6525
bits 17 to 21 0.4124
bits 16 to 20 0.7635
bits 15 to 19 0.7937
bits 14 to 18 0.6625
bits 13 to 17 0.2605
bits 12 to 16 0.2969
bits 11 to 15 0.4443
bits 10 to 14 0.5615
bits 9 to 13 0.9112
bits 8 to 12 0.5198
bits 7 to 11 0.4230
bits 6 to 10 0.2175
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Test p-value

bits 5 to 9 0.5090
bits 4 to 8 0.3862
bits 3 to 7 0.1860
bits 2 to 6 0.0566
bits 1 to 5 0.0400

DNA bits 31 to 32 0.1754
bits 30 to 31 0.7584
bits 29 to 30 0.9544
bits 28 to 29 0.8346
bits 27 to 28 0.5826
bits 26 to 27 0.1480
bits 25 to 26 0.5594
bits 24 to 25 0.1584
bits 23 to 24 0.3046
bits 22 to 23 0.6522
bits 21 to 22 0.2283
bits 20 to 21 0.3949
bits 19 to 20 0.2092
bits 18 to 19 0.6770
bits 17 to 18 0.5791
bits 16 to 17 0.0483
bits 15 to 16 0.8003
bits 14 to 15 0.2025
bits 13 to 14 0.9244
bits 12 to 13 0.2933
bits 11 to 12 0.8076
bits 10 to 11 0.9032
bits 9 to 10 0.4445
bits 8 to 9 0.0572
bits 7 to 8 0.0020
bits 6 to 7 0.5629
bits 5 to 6 0.4422
bits 4 to 5 0.1136
bits 3 to 4 0.4468
bits 2 to 3 0.9574
bits 1 to 2 0.1967

COUNT1S 1st 0.389222
2nd 0.142584

COUNT1B bits 1 to 8 0.987528
bits 2 to 9 0.033604
bits 3 to 10 0.122700
bits 4 to 11 0.077063
bits 5 to 12 0.284149
bits 6 to 13 0.133220
bits 7 to 14 0.883507
bits 8 to 15 0.837384
bits 9 to 16 0.290986
bits 10 to 17 0.122840
bits 11 to 18 0.448345
bits 12 to 19 0.894082
bits 13 to 20 0.937465
bits 14 to 21 0.082221
bits 15 to 22 0.984670
bits 16 to 23 0.647900
bits 17 to 24 0.745915
bits 18 to 25 0.654630
bits 19 to 26 0.519226

Test p-value

bits 20 to 27 0.384261
bits 21 to 28 0.519709
bits 22 to 29 0.636321
bits 23 to 30 0.450539
bits 24 to 31 0.100168
bits 25 to 32 0.527464

PARKING 1st 0.753306
2nd 0.045562
3rd 0.625377
4th 0.323972
5th 0.445521
6th 0.071982
7th 0.192812
8th 0.723613
9th 0.117571
10th 0.232514

K-S test for 10 p-values 0.816693
MDIST 0.550287
SPHERE 1st 0.22300

2nd 0.97539
3rd 0.49749
4th 0.18686
5th 0.75159
6th 0.52404
7th 0.25847
8th 0.30720
9th 0.75467
10th 0.48761
11th 0.21015
12th 0.87452
13th 0.29798
14th 0.00117
15th 0.30458
16th 0.07232
17th 0.38712
18th 0.88621
19th 0.48029
20th 0.58626

K-S test for 20 p-values 0.385851
SQUEEZE 0.991716
OSUMS 1st 0.767464

2nd 0.050108
3nd 0.939012
4nd 0.141600
5nd 0.006633
6nd 0.625941
7nd 0.257937
8nd 0.657818
9nd 0.843215
10nd 0.004834

K-S test for 10 p-values 0.883658
RUNS UP 1st 0.528307

DOWN 1st 0.514689
UP 2nd 0.636428
DOWN 2nd 0.909636

CRAPS No. of wins 0.911708
Throws/game 0.665904
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Table 47: DIEHARD test results for LCG(3249286849523012805, 1, 263)

Test p-value

BDAY bits 1 to 24 0.556632
bits 2 to 25 0.950086
bits 3 to 25 0.301639
bits 4 to 25 0.868120
bits 5 to 25 0.506750
bits 6 to 25 0.622538
bits 7 to 25 0.821106
bits 8 to 25 0.508987
bits 9 to 25 0.015290

K-S test for 9 p-values 0.354311
OPERM 1st 0.361794

2nd 0.164908
RANK 31 × 31 0.344905
RANK 32 × 32 0.485728
RANK 6 × 8 bits 1 to 8 0.961494

bits 2 to 9 0.605221
bits 3 to 10 0.668058
bits 4 to 11 0.964615
bits 5 to 12 0.749401
bits 6 to 13 0.059343
bits 7 to 14 0.421747
bits 8 to 15 0.608381
bits 9 to 16 0.224066
bits 10 to 17 0.569709
bits 11 to 18 0.988024
bits 12 to 19 0.305853
bits 13 to 20 0.681299
bits 14 to 21 0.197022
bits 15 to 22 0.149847
bits 16 to 23 0.870398
bits 17 to 24 0.327733
bits 18 to 25 0.313729
bits 19 to 26 0.715364
bits 20 to 27 0.301268
bits 21 to 28 0.276601
bits 22 to 29 0.511967
bits 23 to 30 0.286821
bits 24 to 31 0.270652
bits 25 to 32 0.001605

K-S test for 25 p-values 0.287553
BSTREAM 1st 0.39199

2nd 0.83252
3rd 0.12597
4th 0.20854
5th 0.67117
6th 0.28405
7th 0.47454
8th 0.47641
9th 0.88268
10th 0.76027
11th 0.93400
12th 0.22150
13th 0.93340

Test p-value

14th 0.51367
15th 0.25324
16th 0.27151
17th 0.33335
18th 0.13489
19th 0.77734
20th 0.73107

OPSO bits 23 to 32 0.7797
bits 22 to 31 0.2278
bits 21 to 30 0.8685
bits 20 to 29 0.2514
bits 19 to 28 0.3909
bits 18 to 27 0.0966
bits 17 to 26 0.7908
bits 16 to 25 0.1643
bits 15 to 24 0.6911
bits 14 to 23 0.5653
bits 13 to 22 0.6739
bits 12 to 21 0.8394
bits 11 to 20 0.2648
bits 10 to 19 0.9502
bits 9 to 18 0.4257
bits 8 to 17 0.3021
bits 7 to 16 0.5312
bits 6 to 15 0.8611
bits 5 to 14 0.9932
bits 4 to 13 0.1494
bits 3 to 12 0.6959
bits 2 to 11 0.0155
bits 1 to 10 0.7019

OQSO bits 28 to 32 0.3784
bits 27 to 31 0.7697
bits 26 to 30 0.1365
bits 25 to 29 0.2957
bits 24 to 28 0.4874
bits 23 to 27 0.6588
bits 22 to 26 0.6808
bits 21 to 25 0.9709
bits 20 to 24 0.3992
bits 19 to 23 0.1824
bits 18 to 22 0.1135
bits 17 to 21 0.0201
bits 16 to 20 0.3269
bits 15 to 19 0.0424
bits 14 to 18 0.8974
bits 13 to 17 0.9974
bits 12 to 16 0.1293
bits 11 to 15 0.5185
bits 10 to 14 0.9428
bits 9 to 13 0.9878
bits 8 to 12 0.5454
bits 7 to 11 0.2165
bits 6 to 10 0.5077
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Test p-value

bits 5 to 9 0.1149
bits 4 to 8 0.1278
bits 3 to 7 0.0614
bits 2 to 6 0.7779
bits 1 to 5 0.1789

DNA bits 31 to 32 0.7481
bits 30 to 31 0.8019
bits 29 to 30 0.0361
bits 28 to 29 0.6313
bits 27 to 28 0.1649
bits 26 to 27 0.2872
bits 25 to 26 0.7782
bits 24 to 25 0.0970
bits 23 to 24 0.5768
bits 22 to 23 0.5314
bits 21 to 22 0.3881
bits 20 to 21 0.8980
bits 19 to 20 0.9086
bits 18 to 19 0.9282
bits 17 to 18 0.0210
bits 16 to 17 0.8397
bits 15 to 16 0.3680
bits 14 to 15 0.4006
bits 13 to 14 0.0804
bits 12 to 13 0.1328
bits 11 to 12 0.8905
bits 10 to 11 0.7657
bits 9 to 10 0.4831
bits 8 to 9 0.8616
bits 7 to 8 0.4749
bits 6 to 7 0.5617
bits 5 to 6 0.7151
bits 4 to 5 0.5524
bits 3 to 4 0.6302
bits 2 to 3 0.1613
bits 1 to 2 0.0980

COUNT1S 1st 0.803964
2nd 0.473314

COUNT1B bits 1 to 8 0.314205
bits 2 to 9 0.271624
bits 3 to 10 0.598896
bits 4 to 11 0.421438
bits 5 to 12 0.113834
bits 6 to 13 0.118614
bits 7 to 14 0.343508
bits 8 to 15 0.619938
bits 9 to 16 0.852324
bits 10 to 17 0.232142
bits 11 to 18 0.968922
bits 12 to 19 0.303762
bits 13 to 20 0.407089
bits 14 to 21 0.115875
bits 15 to 22 0.915336
bits 16 to 23 0.026976
bits 17 to 24 0.417301
bits 18 to 25 0.599062
bits 19 to 26 0.566468

Test p-value

bits 20 to 27 0.093004
bits 21 to 28 0.137280
bits 22 to 29 0.077813
bits 23 to 30 0.552101
bits 24 to 31 0.743590
bits 25 to 32 0.908625

PARKING 1st 0.554479
2nd 0.276387
3rd 0.463618
4th 0.914635
5th 0.819442
6th 0.218799
7th 0.276387
8th 0.590298
9th 0.842447
10th 0.642555

K-S test for 10 p-values 0.300768
MDIST 0.963428
SPHERE 1st 0.37958

2nd 0.39040
3rd 0.43940
4th 0.08448
5th 0.96621
6th 0.35165
7th 0.00055
8th 0.64554
9th 0.09126
10th 0.06005
11th 0.10416
12th 0.76144
13th 0.53002
14th 0.95829
15th 0.29646
16th 0.85687
17th 0.29163
18th 0.65482
19th 0.14456
20th 0.29321

K-S test for 20 p-values 0.763644
SQUEEZE 0.921072
OSUMS 1st 0.448758

2nd 0.787182
3nd 0.931507
4nd 0.787418
5nd 0.157620
6nd 0.652882
7nd 0.636972
8nd 0.153021
9nd 0.676151
10nd 0.261674

K-S test for 10 p-values 0.207865
RUNS UP 1st 0.830472

DOWN 1st 0.008008
UP 2nd 0.675384
DOWN 2nd 0.025304

CRAPS No. of wins 0.699833
Throws/game 0.610991
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5 Conclusion

We summarized the principle and features of LCGs that are frequently used
in particle-transport Monte Carlo methods and tests used to investigate the
quality of the LCGs. We also performed the spectral test, Knuth’s standard
tests and Marsaglia’s DIEHARD tests for the MCNP RNG, 63-bit LCGs
extended from the MCNP RNG and 63-bit LCGs proposed by L’Ecuyer.

The MCNP RNG fails the OPSO, OQSO and DNA tests in the DIEHARD
test suite, whereas it passes the spectral test, the standard tests and other
tests in DIEHARD. However less significant bits fail the tests and thus it
does not matter in the practical use.

The 63-bit LCGs extended from the MCNP RNG fail the spectral test,
whereas they pass the spectral and DIEHARD tests. We have found that we
cannot simply extend the current MCNP RNG to a 63-bit LCG.

L’Ecyer’s 63-bit LCGs pass all the tests and their multipliers are excellent
judging from the spectral test. Therefore, it is considered that they are the
most promising LCGs for the next version of the RNG package.
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